A I:l 1 D A Introduction to the Altera SOPC
=1 ® Builder Using VHDL Designs

1 Introduction

This tutorial presents an introduction to Altera’s SOPC Builder software, which is used to implement a system that
uses the Nios II processor on an Altera FPGA device. The system development flow is illustrated by giving step-
by-step instructions for using the SOPC Builder in conjuction with the Quartus® II software to implement a simple
system. The last step in the development process involves configuring the designed circuit in an actual FPGA device,
and running an application program. To show how this is done, it is assumed that the user has access to an Altera
DE-series Development and Education board connected to a computer that has Quartus II and Nios® II software
installed. The screen captures in the tutorial were obtained using the Quartus II version 11.0; if other versions of the
software are used, some of the images may be slightly different.

Contents:

* Nios II System
* Altera’s SOPC Builder
* Integration of the Nios II System into a Quartus II Project

* Running the Application Program

Altera Corporation - University Program 1
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

2 Nios Il System

Altera’s Nios II is a soft processor, defined in a hardware description language, which can be implemented in Altera’s
FPGA devices by using the Quartus® II CAD system. To implement a useful system it is necessary to add other
functional units such as memories, input/output interfaces, timers, and communications interfaces. To facilitate the
implementation of such systems, it is useful to have computer-aided-design (CAD) software for implementing a
system-on-a-programmable-chip (SOPC). Altera’s SOPC Builder is the software needed for this task. This tutorial
provides a basic introduction to Altera’s SOPC Builder, which will allow the reader to quickly implement a simple
Nios II system on the DE-series board. For a fuller treatment of the SOPC Builder, the reader can consult the Nios
Il Hardware Development Tutorial. A complete description of the SOPC Builder can be found in the Quartus I1
Handbook Volume 4: SOPC Builder. These documents are available on the Altera web site. An example Nios II
system can be implemented on a DE-series board as shown in Figure 1.

Host computer

USB-Blaster
interface

Cyclone

, JTAG Debug JTAG UART FPGA chi
Nios II processor module interface P
Avalon switch fabric
. Flash .

On-chip SRAM SDRAM memo Parallel I/O Serial I/O
memory interface interface interfa?é interface interface

SRAM SDRAM Flash Parallel Serial
. . memory /O port I/0 port

chip chip chip lines lines

Figure 1. A Nios II System implemented on a DE-series board.
2 Altera Corporation - University Program

May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

The Nios II processor and the interfaces needed to connect to other chips on DE-series boards are implemented
in Cyclone-series FPGA chips. These components are interconnected by means of the interconnection network
called the Avalon Switch Fabric. The memory blocks in the Cyclone-series device can be used to provide an on-
chip memory for the Nios II processor. The SRAM, SSRAM, SDRAM and Flash memory chips may be accessed
through the appropriate interfaces if they are supported on the DE-series board. Parallel and serial input/output
interfaces provide typical I/O ports used in computer systems. A special JTAG UART interface is used to connect to
the circuitry that provides a Universal Serial Bus (USB) link to the host computer to which the DE-series board is
connected. This circuitry and the associated software is called the USB-Blaster. Another module, called the JTAG
Debug module, is provided to allow the host computer to control the Nios II system. It makes it possible to perform
operations such as downloading programs into memory, starting and stopping execution, setting breakpoints, and
collecting real-time execution trace data.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware description
language, a knowledgeable user could write such code to implement any part of the system. This would be an
onerous and time consuming task. Instead, one can use the SOPC Builder to implement a desired system simply
by choosing the required components and specifying the parameters needed to make each component fit the overall
requirements of the system. In this tutorial, we will illustrate the capability of the SOPC Builder by designing a very
simple system. The same approach is used to design large systems.

Host computer

USB-Blaster
Reset_n Clock interface
b Cyclone
JTAG D JTAG UART :
Nios II processor oug . FPGA chip
module interface
Avalon switch fabric
. Switches LEDs
On-chip llel i Tlel
memory paralle input paralle output
interface interface
SW7 SW0 LEDG7 LEDGO
Figure 2. A simple example of a Nios II system.
Altera Corporation - University Program 3

May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Our example system is given in Figure 2. The system realizes a trivial task. Eight toggle switches on the DE-series
board, SW7 -0, are used to turn on or off the eight green LEDs, LEDG7 —0. The switches are connected to the Nios
II system by means of a parallel I/O interface configured to act as an input port. The LEDs are driven by the signals
from another parallel I/O interface configured to act as an output port. To achieve the desired operation, the eight-bit
pattern corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will
be done by having the Nios II processor execute a program stored in the on-chip memory. Continuous operation is
required, such that as the switches are toggled the lights change accordingly. Note that on a DEO-Nano board, there
are only four dip switches. Therefore, if you have this board, use the four dip switches, SW3 — 0, and four LEDs,
LED3 -0.

We will use the SOPC Builder to design the hardware depicted in Figure 2. Next, we will assign the Cyclone-series
pins to realize the connections between the parallel interfaces and the switches and LEDs which act as I/O devices.
Then, we will configure the FPGA to implement the designed system. Finally, we will use the software tool called
the Altera Monitor Program to assemble, download and execute a Nios II program that performs the desired task.

Doing this tutorial, the reader will learn about:

Using the SOPC Builder to design a Nios II-based system
* Integrating the designed Nios II system into a Quartus II project
* Implementing the designed system on the DE-series board

* Running an application program on the Nios II processor

3 Altera’s SOPC Builder

The SOPC Builder is a tool used in conjuction with the Quartus II CAD software. It allows the user to easily
create a system based on the Nios II processor, by simply selecting the desired functional units and specifying their
parameters. To implement the system in Figure 2, we have to instantiate the following functional units:

* Nios II processor, which is referred to as a Central Processing Unit (CPU)

* On-chip memory, which consists of the memory blocks in the Cyclone-series chip; we will specify a 4-Kbyte
memory arranged in 32-bit words

* Two parallel I/O interfaces

JTAG UART interface for communication with the host computer
To define the desired system, start the Quartus II software and perform the following steps:

1. Create a new Quartus II project for your system. As shown in Figure 3, we stored our project in a directory
called sopc_builder_tutorial, and we assigned the name lights to both the project and its top-level design
entity. You can choose a different directory or project name, but be aware that the SOPC Builder software

Werken op een USB stick is niet aan te bevelen omdat het dan extra veel tijd kost om te

4 synthetiseren en te compileren. Altera Corporation - University Program
May 2011

http://university.altera.com/
Harry
Markering

Harry
Tekstvak
Werken op een USB stick is niet aan te bevelen omdat het dan extra veel tijd kost om te synthetiseren en te compileren.

Bij stap 1 op pagina 4 moet je gewoon op Next klikken bij de dialogbox die verschijnt na figure
3 op pagina 6. Bij de volgende dialogbox moet je de juiste FPGA chip (device name)
selecteren volgens de tabel op pagina 6. Daarna nog eenmaal op Next klikken en daarna op

Finish. INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

does not permit the use of spaces in file names. For example, an attempt to use a directory name sopc builder
tutorial would lead to an error. In your project, from the list of available devices, choose the appropriate device
name for the FPGA used on the DE-series board. A list of devices names on DE-series boards can be found
in Table 1.

2. Select Tools > SOPC Builder, which leads to the pop-up box in Figure 4. Enter nios_system as the system
name; this will be the name of the system that the SOPC Builder will generate. Choose VHDL as the target
HDL, in which the system module will be specified. Click OK to reach the window in Figure 5. Quartus may
recommand you to use Qsys. Click OK to proceed.

Altera Corporation - University Program 5
May 2011

http://university.altera.com/
Harry
Markering

Harry
Tekstvak
Bij stap 1 op pagina 4 moet je gewoon op Next klikken bij de dialogbox die verschijnt na figure 3 op pagina 6. Bij de volgende dialogbox moet je de juiste FPGA chip (device name) selecteren volgens de tabel op pagina 6. Daarna nog eenmaal op Next klikken en daarna op Finish.

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

&, New Project Wizard

Directory, Name, Top-Level Entity [page 1 of 5]

‘what is the working directory For this project?

D\sopc_builder_tutarial E]
‘Wwhat is the name of this project?
lights E]

‘Wwhat is the name of the top-level design entity For this praject? This name is case sensitive and must exactly match
the entity name in the design file,

lights D

Use Existing Project Settings...

< Back [Mext =] [Finish] [Cancel] [Help

Figure 3. Create a new project.

Board Device Name
DEO Cyclone III EP3C16F484C6
DEO-Nano | Cyclone IVE EPACE22F17C6
DE1 Cyclone II EP2C20F484C7
DE2 Cyclone II EP2C35F672C6
DE2-70 Cyclone II EP2C70F896C6
DE2-115 | Cyclone IVE EPACE115F29C7

Table 1. DE-series FPGA device names

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

I® Create New System @

System Name:l nios_system]

Target HOL: () Werilag

O}

Figure 4. Create a new Nios II system.

3. Figure 5 displays the System Contents tab of the SOPC Builder, which is used to add components to the
system and configure the selected components to meet the design requirements. The available components
are listed on the left side of the window. Before choosing our components, examine the area in the figure
labeled Target. Check the setting for the Device Family and ensure that the correct family is selected for the
DE-series board. Table 1 lists the device families associated with DE-series boards.

4. The Nios II processor runs under the control of a clock. For this tutorial we will make use of the 50-MHz
clock that is provided on the DE-series board. As shown in Figure 5, it is possible to specify the names and
frequency of clock signals in the SOPC Builder display. If not already included in this list, specify a clock
named clk_0 with the source designated as External and the frequency set to 50.0 MHz.

™ jltera SOPC Builder CEX

File Edit Modue System ‘iew Tools Help

System Cortents | System Generstion

Component Likrary Target Clock Seftings

4 | *® Device Family:| Cyclane I w Mame Source hiHz i

Project v clk_0 External 50.0
J; New campanent... 1

Library

Avalon Yerification Sute

Bridges and Sdapters

Debuy Components

Digital Signal Processing

Interface Protocols

Legacy Components

Memories and Memary Contro

Merlin Components

Peripherals

PLL

Processor Addifions

Processors

SLS -

Wideo and Image Processing %

£ | ¥

Use C.. Mame Drescription Clock Ease Endl

< |

Mew... L] x

[|
M
»
4
|

moress Map | [7 Fiters.. | Fiter: Defaut

Exit 4 Mext [] [Generate

Figure 5. The System Contents tab window on a DE-series board.

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

5. Next, specify the processor as follows:

* On the left side of the window in Figure 5 expand Processors, select Nios Il Processor and click Add,
which leads to the window in Figure 6.

™ Nios Il Processor - cpu_0

x)
“ Nios II Processor
.

Parameter
Setting:

Advanced Features MMU and MPU Settings JTAG Debug Module Custom Instructions

Core Nios IT Caches and Memory Interfaces
Core Nios Il

Select a Nios Il core:

[®Nios Il/e ONios Ilfs ONios IIf |
. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone Il Branch Predict!on Branch Predictfon
Hardware Multiply Hardwvare Multiply
feystem: 50.0 MHz Hardware Divide Harciware Divide
i Barrel Shifter
Cpuid: 0 Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMIPS Upto 51 DMIPS
Logic Usage B600-700 LEs 1200-1400 LEs 1400-1800 LEs
Memory Usage Two M4Ks (or equiv.) Two M4Ks + cache Three M4Ks + cache
Hardware Multiply:
Reset Vector: Memory: + Offset oxp
Exception Vector: Memory: + |Offset: gyon

Only include the MMU when using an operating system that explicitly supports an MU
Fast TLB Miss Exception Vector: Memory: Offset:

Warning: Reset vector and Exception vector cannot be set until memory devices are connected to the Nios Il processor

Figure 6. Create a Nios II processor.

* Choose Nios II/e which is the simplest version of the processor. Click Finish to return to the window
in Figure 5, which now shows the Nios II processor specified as indicated in Figure 7. There may be
some warnings or error messages displayed in the SOPC Builder Messages window (at the bottom of the
screen), because some parameters have not yet been specified. Ignore these messages as we will provide
the necessary data later.

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

"= Altera SOPC Builder
Fie Edt Modude System View Tools MNosll Help

System Cortents | System Generation |

Companent Library Target Clock Settings
4 Device Famiy: [Sa=ell Iezme Source WHz
Project clk_0 External 50.0
) MNew companent.,

Library

+-Avalon Verification Sulte

Bricl o Ad

?I o enﬂ;i:::um:rf:m Use Corn. MName Description Clock Base Erid R

+- Digital Signal Processing B epu_d Mo l Procassoe [ichk]

- interface Protocols instruction_master Ayvaion Memory Mapped Master cli_0r

5 Legacy Components data_master Avalan Memory Mapped Master [clk] IRO O IRQ 31%—=

fag_debug_module Aoeon Memory Mappes Slave [clk] Dx00000800 O=x00000££¢

(& Memaories and Memory Corrodery
+-derlin Components
[# Peripherals
#-PLL
Processor Addtions
[=-Processors
Slvios Il Processor
(R
+-Yideo and Image Processing

o &) 1z

Newy... b Add.. %4 P x| allv| x Adress Map... | |\7Ftas..| Fiter: Defaut

'S To Do epu_0c Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
0 To Da: epu_: No exception vectar has been specified for this CPU. Please parameterize the CPU to resolve this issue
., Warning: epu_{r Reset vector and Exception vector cannot be set until memory devices are connected fo the Nios I processor

| w

E 4 Pre Nextw] [Generale

Figure 7. The defined processor on a DE-series board.

6. To specify the on-chip memory perform the following:

* Select Memories and Memory Controllers > On-Chip > On-Chip Memory (RAM or ROM) and
click Add

* In the On-Chip Memory Configuration Wizard window, shown in Figure 8, set the Data width to 32 bits
and the Total Memory Size to 4 Kbytes{4096-bytes) 64 KBytes (65536 bytes)

* Do not change the other default settings
* Click Finish, which returns to the System Contents tab as indicated in Figure 9

Altera Corporation - University Program 9
May 2011

http://university.altera.com/
Harry
Doorhalen

Harry
Tekstvak
64 KBytes (65536 bytes)

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ On-Chip Memory (RAM or ROM) - onchip_memory2 0

On-Chip Memory (RAM or ROM
a.’“.“". altera_avalDE_onchip_me[nyorSQ)

[~ Block Diagram |

clock
avalon
reset

= v type

Tipe: RAM ritable) v

[[] Dual-port access

Single clock operation

Read During Yyrite Mode:

Block type:

[~ size
Diata wicth: 2 v
Total memory size: 4096 bytes

inimize memary block usage (may impact fmse)

[* Read latency

Slave 51 Latency:

Slave 52 Latency:

|' Memory initialization

Initialize memary conternt

[[] Enakle non-detautt initislization fils

User created inttialization file: | |

|:| Enable In-System Memory Content Editor festure
Instance ID: | |

|® Info: onchip_memory2_0: Memory will be inttialized from onchip_memory2_0.hex |

Figure 8. Define the on-chip memory.

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ Altera SOPC Builder

File Ecit Module System “ieww Toolz Niosl Help

System Corterts | System Generation

Componert Library Target Clock Settings
_} b 4 Device Family:| Cyclone I ~ Mame SOurce MHz s
ject =2 clk_0 External 50.0
g New component... 1
rary
Avalon Werification Suite
Eirich ol Aol
Tidges an apters Use Conn...| Mame De=scription Clock Base Endl IRG
Debug Components .
Digital Signal Processing E cpu_0 Mios Il Processor [clk]
Interface Protocols instruction_master Avalon Memory Mapped Master clik_0
Legacy Companents data_master Avalon Mermary Mapped Master [clk] ImQ 0 IRQ 31 ><
temories and Memary Cortrollers [T Jag_debug_module Avalon Memary Mapped Slave [clk] 0300000800 |(0x00000££f

= onchip_memory2 0 On-Chip Memary (RAM ar ROM)
=1 Avalon Memory Mapped Slave clk_0 000002000 |(0x0000ZEE£

[#-External Memory Interfaces
[=-0n-Chip

Svalon-ST Dual Clack —
Avalon-ST Multi-Chan
Avalon-ST Round Rot
Avalon-ST Single Clog
On-Chip FIFC Memary
0

- SDRAM b
< | >

< | ?

New... ’ F] ’ 9 Remove] ’ [Edlt...] v | = Address Map... | ’ 7 Fitters...] Fitter: Default

! To Do: epu_D: Mo reset vector has been specified for this CPU. Pleaze parameterize the CPU ta resolve this izsue

CJ ToDo: epu_0: No exception vector has been specified for this CPU. Please parameterize the CPU to resalve this izsue
@ Info: enchip_memory2_0: Memory will be intialized from onchip_memary2_0.hex

4 ’ Mext [] [Generate

Figure 9. The on-chip memory included on a DE-series board.

7. Specify the input parallel I/O interface as follows:
* Select Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard in Figure 10

* Specify the width of the port to be 8 bits and choose the direction of the port to be Input, as shown in the
figure. On a DEO-Nano board, specify the width of the port to be 4 bits.

* Click Finish to return to the System Contents tab as given in Figure 11

Altera Corporation - University Program 11
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

12

= PI0 (Parallel I/0) - pio_0

“ PIO (Parallel 1/0)
Megators” altera_avalon_pio

|~ Block Diagram |

clock #=c
reset M=reset

avalon B=s

canduit M=external_connection

=

|~ Basic Settings
Wicth (1-32 bit=) g
Direction:) Bidir
@ hput
) InCut
() Output

[~ Output Regist |

|~ Edge capture register |

|:| Synchronously capture
Edge Type:

[~ Interrupt
[] Generate IRG
IRE Type:

Level: Interrupt CPU when any unmasked 10 pin is logic true
Edge: Interrupt CPU when any unmasked bit in the ecoe-capture
register i logic trus. Available when synchronous capturs is enabled

[+ Test bench wiring |
[C] Harwire PIC inputs in test bench

@ Info: pio_0: PIO inputs are not hardwired intest bench. Undefined values)
< | ¥

Figure 10. Define a parallel input interface.

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ Altera SOPC Builder

File Edit Module System ‘iew Tools Mios |l Help

System Cortents ‘ System Generation

Companent Likrary Target Clock Settings
4 X Device Family:| Cyclone I w ame Source MHz o
Project V- clk_0 External 500
0 New component... 1

Library

[H-Avalon Yerification Suite

(+-Bridues and Adapters

_ Debﬁg Compnne:tts Use | Conn.. Name Description Clock Base End R
[#-Digital Signal Processing B cpu_ Mios Il Processor (k]

[+ Interface Protocols instruction_master Awealon Memory Mapped Master clk_0

[#-Legacy Components data_tmaster Awealon Memory Mapped Master [clk] InQ o IRQ 31 £
[#-Memoties and Memory Contro f* Jtag_debug_module Avalon Memory Mapped Slave [clk] 000000800 (0x00000££E

- Merlin Companerts E onchip_memory2 0 |On-Chip Memary (RAM aor ROM) [clk1]

[=)-Peripherals “ &1 Asealon Memory Mapped Slave 000002000 |0x0000Z£fE

[#-Diebug and Performmance

PIC (Paraliel i3]

- Digplary =1 Aualon Memory Mapped Slave clk_0 0x00000000 |0x0000000¢
[#-FPGA Peripherals
= -Micracontroler Periphersl
[Interval Timer
FIC (Parallel 110)
F-Muttiprocessor Coordinati
< t | >
ey [=R Add I [I Remove] [L: Eddit] v x Address Map] [\? Filters] Filter: Default
CJ Ta Do: epu_0: Mo reset vectar has been specified for this CPU. Please parameterize the CPU to rezolve this issue -

2 To Do: epu_0: Mo exception vector has been specified for this CPU. Please parameterize the CPU fo resolve this issue
@ Info: onchip_memory2_0: Memory will be initislized from onchip_memory2_0.hex —
| Infre nio 0 PIO inwts are oot hardwired intest hench |ndefined valies swil e read feam PIO inauts durin simkation s

trer | [end]

[Generate

Figure 11. The parallel input interface included on a DE-series board.

8. In the same way, specify the output parallel I/O interface:
* Select Peripherals > Microcontroller Peripherals > PIO (Parallel I/O) and click Add to reach the
PIO Configuration Wizard again

* Specify the width of the port to be 8 bits and choose the direction of the port to be Output. On a
DEO-Nano board, specify the width of the port to be 4 bits.

* Click Finish to return to the System Contents tab

9. We wish to connect to a host computer and provide a means for communication between the Nios II system
and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

* Select Interface Protocols > Serial > JTAG UART and click Add to reach the JTAG UART Configu-
ration Wizard in Figure 12

* Do not change the default settings

* Click Finish to return to the System Contents tab

Na stap 9 moet je een “system ID” component toevoegen. Deze component vind je in SOPC
builder bij “Peripherals -> Debug and Performance -> Sytem ID Periphiral”. Verander de
naam van het System ID component naar sysid om er voor te zorgen dat deze compatibel is
met de Nios drivers en building tools.

Altera Corporation - University Program 13
May 2011

http://university.altera.com/
Harry
Tekstvak
Na stap 9 moet je een “system ID” component toevoegen. Deze component vind je in SOPC builder bij “Peripherals -> Debug and Performance -> Sytem ID Periphiral”. Verander de naam van het System ID component naar sysid om er voor te zorgen dat deze compatibel is met de Nios drivers en building tools.

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ JTAG UART - jtag uart 0

%R JTAGUART
Megaters” altera_svalon_tag_uart

|~ Block Diagram |

jtag_uart 0

clock B=clk irq 4 interrupi
reset®=reset
avalon M= avalon_itag_slave

[~ Wirite FIFO (Data from Avalon to JTAG)
Buffer depth (bytes): [gg

IRG threshold: g

[] Construct using registers instead of memory blocks

[~ Read FIFO (Data from JTAG to Avalon)
Buffer depth (bytes): [gq

IR threshold: g

[] Construct using registers instead of memory blocks

|* simulated input character stream
Conterts:

|~ Prepare interactive wi |
Optionz INTERACTIVE_&SCI_OUTPUT |+

| Allow multiple connections |

[Alloww muttiple connections to Avalon JTAG slave

Figure 12. Define the JTAG UART interface.

10. The complete system is depicted in Figure 13. Note that the SOPC Builder automatically chooses names for

11.

14

the various components. The names are not necessarily descriptive enough to be easily associated with the
target design, but they can be changed. In Figure 2, we use the names Switches and LEDs for the parallel
input and output interfaces, respectively. These names can be used in the implemented system. Right-click on
the pio_0 name and then select Rename. Change the name to Switches. Similarly, change pio_1 to LEDs.

The base and end addresses of the various components in the designed system can be assigned by the user, but
they can also be assigned automatically by the SOPC Builder. We will choose the latter possibility. So, select
the command (using the menus at the top of the SOPC Builder window) System > Assign Base Addresses,
which produces the assignment shown in Figure 14.

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ Altera SOPC Builder

File:

Edit Module

Syatem Wiew Tools Miosl Help

System Cortents ‘ System Generation

Companent Likrary Target Clock Settings
'y b4 Device Family:| Cyclone I v Mame Source hHz
- clk_0 Exdernal 00
Project ~ - Remaove
- New component..
Library
Avalon Yerification Sute
ridges and Adapters
N wt Use | Conn.. Name Description Clack Baze Encl IR
ey Components -
Digital Signal Processing = cpu_d Mios | Processar [clk]
= Interface Protocals instruction_master Awealon Memory Mapped Master clk_0
data_tmaster Awealon Memory Mapped Master [clk] IrQ 0 InQ 21
g _debug_module Ayealon Memory Mapped Slave [clk] 000000800 |0x00000£f£
jigh Speed E onchip_memory2_0 Cn-Chip Memory (RAM ar ROM) [clk1]
rterlaken &1 Ayealon Memory Mapped Slave clk_0 000002000 |0x0000Z£££
= pio_0 PIC (Parallel 107 [clk]
| &1 Ayealon Memory Mapped Slave clk_0 000000000 |0x0000000 £
= pio_1 PIC (Parallel 107 [clk]
Ayalon-ST JTAG &1 Ayealon Memory Mapped Slave clk_0 000000010 |0x000000L £
Ayalon-ST Serial = jtag_uart_0 J RT -
avalon_jtag_slave Ayealon Memory Mapped Slave 000000020 |0x00000027 P 3
o SPI(3Wire Serial
 UART (RS-232 Sk 4
£ | * ¢ | 3
et [s] | [remove | [et | v |[x moress Map | [7 Fiters.. | Fiter: Defaut
) To Do: epu_t: Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue
L Ta Do: epu_0: Mo exception vectar has heen specified for this CPU. Please parameterize the CPU to resalve this issue
@ Info: onchip_memory2_0: Memory will be intislized from onchip_memory2_0.hex
@ Info; pio_0: PIC inputs are not hardhwired in test bench. Undefined values wil be read from PI2 inputs during simulation.
4 Prev Mext [] [Generate

Figure 13. The complete system on a DE-series board.

Altera Corporation - University Program

May 2011

15

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ Altera SOPC Builder

File Edit Module System ‘iew Tools Mios |l Help

System Cortents ‘ System Generation

Comporent Library Target Clock Settings
4 x Device Family:| Cyclone I v Mame Source hiHz ndd
Project v clk_0 External 50.0
0 New component... P
Library
[#-&valon Verification Suite

(- Bridyes and Adapters

- Debug Componerts Use | Conn.. Name Description Clack Baze Encl IR
[+ Digital Signal Processing = cpu_d Mios | Processor [clk]
(= Interface Protocols instruction_master Awealon Memory Mapped Master clk_0
--ASI data_tmaster Awealon Memory Mapped Master [clk] InQ o IRQ 31
--E‘thernet r g _debug_module Ayealon Memory Mapped Slave [clk] 03200002800 (Ox0000Z£££F
-High Spesd . E onchip_memory2_0 Cn-Chip Memory (RAM ar ROM) [clk1]
Interlaken “ =1 Ayealon Memory Mapped Slave clk_0 03200001000 |(Ox00001£f££E
Pl & Switches PIC (Parallel i) [clk]
#-5D1 3 =1 Ayealon Memory Mapped Slave clk_0 03200003000 (0x0000200¢F
- Serial 10 (Paraliel 110)
Lo Avalon-ST JTAG =1 Auealon Memory Mapped Slave clk_0 000003010 (0x0000301£
avaion-ST Serial B jtag_uart_o JTAG UART lclk]
RT avalon_jtag_slave Ayealon Memory Mapped Slave clk_0 000002020 |0x000032027 3
SPI(3wWire Serial
@ UART (R=-232 3¢
< | b < 1 5

ey ... [R Add. I [I Remove] [L:, Edit...] E] [Address Map...] [\? Fitters..] Filter: Default

0 To Do: epu_0: Mo reset vector has been specified for this CPU. Please parameterize the CPU to resolve this issue

2 To Do: cpu_0: Mo exception vector has been specified for this CPU. Please parameterize the CPU fo resolve this issue

@ Info: onchip_memory2_0: Memory wil be inftislized from onchip_memary2_0.hex

@ Info; Switches: IO inputs are not hardwired in test bench. Undefined values will be read from PIC inputs during simulstion

4 [Mext [] [Genetate

Figure 14. The final specification on a DE-series board.

12. The behaviour of the Nios II processor when it is reset is defined by its reset vector. It is the location in the
memory device the processor fetches the next instruction when it is reset. Similarly, the exception vector is the
memory address the processor goes to when an interrupt is raised. To specify these two parameters, perform
the following:

* Right-click on the cpu_0 and then select Edit to reach the window in Figure 15

* Select onchip_memory2_0 to be the memory device for both reset vector and exception vector, as
shown in the Figure 15

* Do not change the default setting for offset
* Click Finish to return to the System Contents tab

Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Core Nios Il

™ Nios Il Processor - cpu_0

Ty stem: 50.0MHZ

Nios II Processor

Caches and Memory Interfaces Advanced Features

Select a Nios Il core:

MMU and MPU Settings

Hardware Divide

cpuid: 0
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMIPS
Logic Usage 600-700 LEs 1200-1400 LEs
Memory Usage Twvo MaKs (or equiv.) Two MdKs + cache
Hardwvare Muttiply:
Reset Vector: Memory: | anchip_memory2_0 + |Offset: |gyg
Exception Vector: Memory: | Ry el + |Offset: [gy2n

|® Nios life ONios lIfs ONios IIf
. RISC RISC RISC
Nios Il 32-bit 32-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Prediction Branch Prediction
Hardware Multiply Hardwvare Multiply

Hardware Divide

Barrel Shifter

Data Cache

Dynamic Branch Prediction
Up to 51 DMIPS

1400-1800 LEs

Three MdKs + cache

0x00001000
0x00001020

Only include the MMU when using an operating system that explicitly supports an MMU
Fast TLB Miss Exception Vector: Memory:

Offset:

JTAG Debug Module

Custom Instructions

Cancel

Figure 15. Define the reset vector and exception vector.

13. Having specified all components needed to implement the desired system, it can now be generated. Select the
System Generation tab, which leads to the window in Figure 16. Turn off Simulation - Create project
simulator files, because in this tutorial we will not deal with the simulation of hardware. Click Generate
on the bottom of the SOPC Builder window. The SOPC Builder may prompt you to save changes to .sopc
filg, Click Save to proceed. The generation process produces the messages displayed in the figure. When
thef message “SUCCESS: SYSTEM GENERATION COMPLETED" appears, click Exit to return to the main
Qulartus II window.

Kies nios_system als filenaam.

Altera Corporation - University Program

May 2011

17

http://university.altera.com/
Harry
Bijschrift
Kies nios_system als filenaam.

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

™ Altera SOPC Builder - nios_system.sopc (D:\sopc_builder_tutorialinios_system.sopc)

File Edit Module System ‘iew Tools Mios |l Help

System Conterts

Options

System module logic will be created in Verilog.

|:| Simulation. Creste project simulator files.

iz Il Tools

[Miog I| Software Build Tools for Eclipse

2011.05.06 13:40:53 (*) Running Generstor Program for Switches
2011.03.06 13:40:54 (*) Running Generstor Program for LEDs
2011.05.06 13:40:55 (*) Running Generstor Program for fag_uart_0
2011.05.06 13:40:56 (*) Making arbitration and system (top) modules.
2011.05.06 13:40:58 () Generating Quartus symbol for top level nois_system
2011.05.08 13:40:58 (*) Generating Symbol Dofsope_builder_tutorialinois_system bef
2011.05.06 135:40:55 (*) Cresting command-line system-generation script: Cofsopc_builder_tutorial/inois_system_generation_script
2011.05.06 13:40:58 (*) Running setup for HOL simulator: modelsim
2011.05.06 13:40:58 (*) Completed generation for system: nois_system.
2011.03.06 13:40:58 (*) THE FOLLOWANG 5% STEM ITEMS HAWE BEEM GEMERATED:
SOPC Builder database : Dnfzopc_builder_tutorialinois_system ptf
System HDL Mocel : D fsopc_builder_tutorialinois _system.v
System Generation Script : D:=opc_builder_tutarialinols_system_generation_script
#2011.05.06 13:40:58 (*) SUCCESE: SYSTEM GEMERATION COMPLETED.
@ Info: System generstion was successful.
<

@ Info: onchip_memory2_0: Memory will be intislized from onchip_memory2_0.hex
@ Info; Switches: PIC inputs are not hardwired in test bench. Undefined values will be read from PIC inputs during simulstion

Co) (] (Ao] b

Figure 16. Generation of the system.

Changes to the designed system are easily made at any time by reopening the SOPC Builder tool. Any component
in the System Contents tab of the SOPC Builder can be selected and deleted, or a new component can be added and

the system regenerated.

4 Integration of the Nios Il System into a Quartus Il Project

To complete the hardware design, we have to perform the following:

* Instantiate the module generated by the SOPC Builder into the Quartus II project
* Assign the FPGA pins
* Compile the designed circuit

* Program and configure the Cyclone-series device on the DE-series board

18 Altera Corporation - University Program

May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

4.1 Instantiation of the Module Generated by the SOPC Builder

The instantiation of the generated module depends on the design entry method chosen for the overall Quartus II
project. We have chosen to use VHDL, but the approach is similar for both Verilog and schematic entry methods.

Normally, the Nios II module is likely to be a part of a larger design. However, in the case of our simple example
there is no other circuitry needed. All we need to do is instantiate the Nios II system in our top-level VHDL file, and
connect inputs and outputs of the parallel I/O ports, as well as the clock and reset inputs, to the appropriate pins on
the Cyclone-series device.

The VHDL entity generated by the SOPC Builder is in the file nios_system.vhd in the directory of the project. Note
that the name of the VHDL entity is the same as the system name specified when first using the SOPC Builder.
The VHDL code is quite large. Figure 17 depicts the portion of the code that defines the port signals for the entity
nios_system. The 8-bit vector that is the input to the parallel port Switches is called in_port_to_the_Switches. The
8-bit output vector is called out_port_from_the_LEDs. The clock and reset signals are called clk_0 and reset_n,
respectively. Note that the reset signal is added automatically by the SOPC Builder; it is called reset_n because it is
active low.

1883 Eentity nios_systen is

1884 = port |

1885 -- 1) global signals:

1886 signal clk 0 : IN STD_LOGIC:

1887 Signal reset_n : IN STD_LOGIC:

1888

1889 -- the LEDs

1890 signal out_port_ from the LEDs : OUT STD_LOGIC VECTOR (7 DOWNTO O):
1891

1892 -- the Switches

1893 signal in port_to_the Switches : IN 3TD_LOGIC_WVECTOR (7 DOWNTO 0O)
1894 1

1895 end entity nios_systen;

1896

Figure 17. A part of the generated VHDL module.

Dit is een beetje vaag en ook niet helemaal juist. Volg de instructies op
http://bd.eduweb.hhs.nl/es/pract0.htm

Figure 18 shows a/top-level VHDL module that instantiates the Nios II system. This entity is named lights, be-
cause this is the gfame we specified in Figure 3 for the top-level design entity in our Quartus II project. Note
that the input and output ports of the entity use the pin names for the 50-MHz clock, CLOCK_50, pushbutton
switches, KEY, tpggle switches, SW, and green LEDs, LEDG, that are specified in the DE-series User Manual.
oard, you have to change the code slightly to use four dip switches, SW3 -0, and four LEDs,
LED3 —0. Type this code into a file called lights.vhd. Add this file and all the *.vhd files produced by the SOPC
Builder to your Quartus II project. Also, add the necessary pin assignments on the DE-series board to your project.
The procedure for making pin assignments is described in the tutorial Quartus Il Introduction Using VHDL De-
signs. Note that an easy way of making the pin assignments when we use the same pin names as in the DE-series
User Manual is to import the assignments from file. For example, the DE2 pin assignments can be found in the
DE?2_pin_assignments.qsf file, in the directory tutorials\design_files, which is included on the CD-ROM that accom-
panies the DE-series board §nd can also be found on Altera’s DE-series web pages. On a DE2-70 board, you may also
need to change operating moge of the nCEO pin to regular I/O. This can be done by going to Assignments > Device
> Device and Pin Options % Dual-Purpose Pins and double-clicking on the Value field of the nCEO pin and

Altera Corporation - University Program
May 2011

de benodigde file kun je vinden op http://bd.eduweb.hhs.nl/es/
pract0.htm. Let op! daarna moet je de nCEO pin nog goedzetten
(zoals hierboven staat uitgelegd).

Je kan via Assignments->Import Assignments... een .csv importeren,

http://university.altera.com/
Harry
Markering

Harry
Bijschrift
Dit is een beetje vaag en ook niet helemaal juist. Volg de instructies op
http://bd.eduweb.hhs.nl/es/pract0.htm

Harry
Markering

Harry
Bijschrift
Je kan via Assignments->Import Assignments... een .csv importeren, de benodigde file kun je vinden op http://bd.eduweb.hhs.nl/es/pract0.htm. Let op! daarna moet je de nCEO pin nog goedzetten (zoals hierboven staat uitgelegd).

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

changing it to Use as regular I/O.

De bovenstaande code is niet correct. Zie http://bd.eduweb.hhs.nl/es/pract0.htm voor de juiste code.

Having made the necessary settings compile the code. You may see some warning messages associated with the
Nios II system, such as some signals being\inused or having wrong bit-lengths of vectors; these warnings can be
ignored.

Kies Processing > Start Compilation.

20 Altera Corporation - University Program
May 2011

http://university.altera.com/
Harry
Doorhalen

Harry
Tekstvak
De bovenstaande code is niet correct. Zie http://bd.eduweb.hhs.nl/es/pract0.htm voor de juiste code.

Harry
Doorhalen

Harry
Tekstvak
Deze stap slaan we over

Harry
Markering

Harry
Bijschrift
Kies Processing > Start Compilation.

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

4.2 Programming and Configuration

Program and configure the Cyclone-series FPGA in the JTAG programming mode as follows:

1. Connect the DE-series board to the host computer by means of a USB cable plugged into the USB-Blaster
port. Turn on the power to the DE-series board. Ensure that the RUN/PROG switch is in the RUN position.

2. Select Tools > Programmer to reach the window in Figure 19.

3. If not already chosen by default, select JTAG in the Mode box. Also, if the USB-Blaster is not chosen by
default, press the Hardware Setup... button and select the USB-Blaster in the window that pops up.

4. The configuration file lights.sof should be listed in the window. If the file is not already listed, then click Add
File and select it.

5. Click the box under Program/Configure to select this action.

6. At this point the window settings should appear as indicated in Figure 19. Press Start to configure the FPGA.

O Programmer - D:fsopc_builder_tutorialflights - lights - [lights.cdf]

File Edit View Processing Tools ‘Window Help &

éaHardware Setup...| |IJSB-Blaster [USE-0] Mode: |ITAG e Progress:]

[] Enable real-time ISP ta allow backaraund programring (Far MAX I and MAX ¥ devices)

File Device Checksum Usercode Programj’ Werify Blank- E:xamine Secy
s start Configure Check B

PRCISFETZ O042E4D0 FFFFFFFF

mils Skop

*E'ﬂ Auto Detect

¥ Delete < >

e dd File...

>

s Change File...

B save File TDL

[Add Device...

4 up EPZCISFET2

DO
wﬂ Dawen 4

Figure 19. The Programmer window.
Hoofdstuk 5 (het laatste hoofdstuk van deze tutorial) slaan we
over omdat wij de Niosll EDS (Embedded Design Suite) voor
5 Running—the—AppHeaﬁen—Preg#amhet ontwikkelen van de software geen gebruiken. Zie verder op
http://bd.eduweb.hhs.nl/es/pract0.htm.
Having configured the required hardware in the FPGA device, it is now necessary to create and execute an application
program that performs the desired operation. This can be done by writing the required program either in the Nios II
assembly language or in a high-level language such as C. We will illustrate both approaches.

Altera Corporation - University Program 21
May 2011

http://university.altera.com/
Harry
Tekstvak
Hoofdstuk 5 (het laatste hoofdstuk van deze tutorial) slaan we over omdat wij de NiosII EDS (Embedded Design Suite) voor het ontwikkelen van de software geen gebruiken. Zie verder op http://bd.eduweb.hhs.nl/es/pract0.htm.

Harry
Doorhalen

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

A parallel I/O interface generated by the SOPC Builder is accessible by means of registers in the interface. Depend-
ing on how the PIO is configured, there may be as many as four registers. One of these registers is called the Data
register. In a PIO configured as an input interface, the data read from the Data register is the data currently present
on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios II processor) into
the Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface, then the PIO inputs
and outputs use the same physical lines. In this case there is a Data Direction register included, which determines
the direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have the Data register.
The addresses assigned by the SOPC Builder are 0x00003000 for the Data register in the PIO called Switches and
0x00003010 for the Data register in the PIO called LEDs, as indicated in Figure 14.

5.1 Using a Nios Il Assembly Language Program

Figure 20 gives a Nios II assembly-language program that implements our trivial task. The program loads the
addresses of the Data registers in the two PIOs into processor registers r2 and r3. It then has an infinite loop that
merely transfers the data from the input P1O, Switches, to the output P1O, LED:s.

The program includes the assembler directive
Ainclude "nios_macros.s"

which informs the Assembler to use the Nios II macros that specify how the movia pseudoinstructions can be
assembled.

.Anclude "nios_macros.s"
.equ Switches, 0x00003000
.equ LEDs, 0x00003010
.global _start
_start: movia r2, Switches
movia 13, LEDs
loop: Idbio 4, 0(r2)
stbio 14, 0(r3)
br loop

Figure 20. Assembly language code to control the lights.

The directive
.global _start

indicates to the Assembler that the label _start is accessible outside the assembled object file. This label is the default
label we use to indicate to the Linker program the beginning of the application program.

For a detailed explanation of the Nios II assembly language instructions see the tutorial Introduction to the Altera
Nios Il Soft Processor.

22 Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Enter this code into a file lights.s and place the file into a working directory. We placed the file into the direc-
tory sopc_builder_tutorial\app_software. The program has to be assembled and converted into an S-Record file,
lights.srec, suitable for downloading into the implemented Nios II system.

Altera provides the monitor software, called Altera Monitor Program, for use with the DE-series board. This soft-
ware provides a simple means for compiling, assembling and downloading of programs into a Nios II system imple-
mented on a DE-series board. It also makes it possible for the user to perform debugging tasks. A description of this
software is available in the Altera Monitor Program tutorial.

Open the Altera Monitor Program, which leads to the window in Figure 21. This software needs to know the
characteristics of the designed Nios II system, which are given in the ptf file nios_system.ptf. Click the File > New
Project menu item to display the New Project Wizard window, shown in Figure 22, and perform the following steps:

10.

11.

. Enter the sopc_builder_tutorial directory as the Project directory by typing it directly into the Project directory

field, or by browsing to it using the Browse... button.

. Enter lights as the Project name and click Next >, leading to Figure 23.

. From the Select a System drop down box, select <Custom System>.

Click Browse... beside the System Description field to display a file selection window and choose the
nios_system.ptf file. Note that this file is in the design directory sopc_builder_tutorial.

. Specifying the .sof file in the Quartus II Programming (SOF) File field allows the user to download the pro-

gramming file onto the board from the Altera Monitor Program. Note that we need not specify this file as we
have already downloaded the programming file onto the board.

Click Next >.

. Select Assembly Program as the program type from the drop down menu and click Next >, leading to

Figure 24.

. Click Add... to display a file selection window and choose the lights.s file and click select. Note that this

file is in the directory sopc_builder_tutorial\app_software. Upon returning to the window in Figure 24, click
Next >.

. Ensure that the Host Connection is set to the USB-Blaster, the Processor is set to cpu_0 and the Terminal

Device is set to the JTAG UART, and click Next >

The Altera Monitor Program also needs to know where to load the application program. In our case, this is the
memory block in the FPGA device. The SOPC Builder assigned the name onchip_memory2_0 to this block.
As shown in Figure 25, the Monitor Program has already selected the correct memory device.

Having provided the necessary information, click Finish to confirm the system configuration.

Altera Corporation - University Program 23
May 2011

http://university.altera.com/

24

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Altera Monitor Program [Nies Il]
Eile Settings

Actions

Windows

Help

HE B+4B 200k

Disassembly — ¥ | Registers -
Goto instruction|.°.ddress (hex) or symbolname:| | Mw

E
o] [»]
Disassembly f Breakpoints j Memory j ‘Wakches j Trace |
Terminal = * | Info & Errors - X

Info & Errors f GDB Server;’

Figure 21. The Altera Monitor Program window on startup.

Altera Corporation - University Program

May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

New Project Wizard

&

Specify a project name and directory

Project directory:

|D:\snpc_hullder_tutnrla\ | ‘ Browse... |

Project name:

|Iights

‘ < Back ‘ | Mext = | | Finish | | cancet ||

Figure 22. Specify the project directory and name.

New Project Wizard
Specify a system

-Select a sysk

|<Custom System:» 'l ‘ Documentation |

Specify a Mios 1T system by selecting a system description {PTF) file, and an optional Quarkus II programming (SOF)
File.

~System detail
System description {PTF) File:

|D:\sup:_bui\der_tuturial\nius_system.ptF | ‘ Browse... |

Quartus IT programming {SOF) file (optional):

| ‘ Browse... |

The SOF file represents the FPGA pragramming file For the Mios IT system. IF it is specified here, then the Monitor
Program can be used to download this pragramming file onta the board. Otherwise, the system will need to be
downloaded using some other methad (for example, by using Quartus 113,

‘ < Back. ‘ | Mext = | | Einish | | Cancel |

Figure 23. The System Specification window.

Altera Corporation - University Program

May 2011

25

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

26

New Project Wizard gl

Specify program details

Source fil

Fitst source file is used to determine the name of the binary program File,

D:\sopc_builder_tutoriahapp_softwareilights.s Add...

Remove

Dowin

~Program opti

Start symbal: | _skart

‘ < Back. ‘ | Mext = | | Einish | | Cancel |

Figure 24. Specify the binary file to use.

+ New Pro

Specify program memory settings

-Processor's reset and exception vectors {read-only}
Reset vector address (hex: 1000

Exception vector address (hex): 1020

~Memory optit
Here you can specify the starting addresses of sections identified by text and .data assembler directives, These
addresses can be in the same or in different memories {on-chip, SDRAM, ...}, They can be used to ensure that the
Jtext and \data sections do not overlap with other sections, such as reset and .exceptions, If .text and .data are
specified to have the same address, the .data section will be placed right after the .text section by the linker.
r-tent secti
Memary device: ‘unchipfmemuryZﬁDp’sl {1000h - 1FFFR) '|
Start offset in device (hex): ‘ Dl
r.data secti
Memory device: \hnchipfmemurnyDp’sl (1000h - 1FFFh) vﬂ
Start offset in device (hex): ‘ Dl

t Wizard g|

‘ < Back. ‘ | Mext = | | Einish | | Cancel |

Figure 25. The program memory settings window.

Altera Corporation - University Program

May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Next, to assemble and download the light.s program, click the Actions > Compile & Load menu item. The Altera
Monitor Program will invoke an assembler program, followed by a linker program. The commands used to invoke
these programs, and the output they produce, can be viewed in the Info & Errors window of the Monitor Program
window. After the program has been downloaded onto the board, the program is displayed in the Disassembly
window of the Monitor Program as illustrated in Figure 26. Observe that movia is a pseudoinstruction which is

implemented as two separate instructions.

Click the Actions > Continue menu item to execute the program. With the program running, you can now test the

design by turning the switches, SW7 to SW0 on and off; the LEDs should respond accordingly.

+ Altera Monitor Program [Nios II] - lights.ncf : lights.srec [Paused]

Flle Settings Actions Windows Help

MR & ¢@E @000k 3"

Disassembly = X | Registers - X
. 5 Reg Yalue
Goto instruction | Address (hex) or symbol name: Go
bizeres IE e 0x00001000 ||
.global _start |~ |zexo 0x00000000
rl 0x00000000
_start: r2 0x00000000
movia r2, Switches 3 0x00000000
start: 4 0%00000000 | -/
0x00001000 ‘ orhi r2, zero, Ox0 £S5 0x00000000 |8
0x00001004 14 ori 2, rz, 0x3000 ”3 EXEEEEEEEE
r X
movia r3, LEDs
o oviE re = |8 0x00000000
0x00001008 . 3 orhi r3, zero, Ox0 —‘ r9 0x00000000
0x0000100c cc04l ori r3, r3, 0x3010 rlo 0x00000000 ||
rll 0x00000000
loop: ldbio x4, 0(r2) rl2 0x00000000
loop: rl3 0x00000000
0x00001010 2 1dbio rd, 0(r2) rld 0x00000000
sthio rd, 0{r3) rls 0x00000000
0x00001014 sthio rd, 0(r3) | [x1l6 0x00000000
PeQNNNLOLE hr —Ove (0vAOO0LA1I0: laond = |x17 0x00000000
Ld D] |lns 0%00000000
Disassembly | Breakpoints | Memory / Watches / Trace | rlg 0x00000000 |+ |
Terminal - X | Info & Errors - X

[USE-0]", dewice 1, instance 0x00

JTAG UART link established using cable "USB-Blaster

Verified 0K

Connection established to GDB server at localhost:zd40
Symbols loaded.

Source code loaded.

INFO: Program Trace not enabled, because trace requir

4 [P | { »

[ala]

Info &Errors / GDB Server /

Figure 26. Display of the downloaded program.

The Monitor Program allows a number of useful functions to be performed in a simple manner. They include:

single stepping through the program

* examining the contents of processor registers

* examining the contents of the memory

Altera Corporation - University Program
May 2011

setting breakpoints for debugging purposes

disassembling the downloaded program

27

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

A description of this software and all of its features is available in the Altera Monitor Program tutorial.

5.2 Using a C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 27. Enter this code into a file called lights.c.

#define Switches (volatile char *) 0x0003000
#define LEDs (char *) 0x0003010
void main()
{ while (1)
*LEDs = *Switches;
}

Figure 27. C language code to control the lights.

Perform the following steps to use this program:

1. Disconnect from the current debugging session by clicking the Actions > Disconnect menu item.

2. Click the Settings > Program Settings... menu item to launch the Project settings window with the Program
settings tab selected.

3. Select C Program as the Program Type in the drop-down list. The Monitor Program may prompt you to clear

any currently selected source files. Click Yes to proceed. Note that lights.s has been removed from the list of
source files.

4. Click Add... and choose the lights.c file.

5. Click OK to confirm the new program configuration.

The steps to compile, load, and run the program are the same as for an assembly language program.

28 Altera Corporation - University Program
May 2011

http://university.altera.com/

INTRODUCTION TO THE ALTERA SOPC BUILDER USING VHDL DESIGNS

Copyright ©1991-2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

Altera Corporation - University Program 29
May 2011

http://university.altera.com/

	1 Introduction
	2 Nios II System
	3 Altera's SOPC Builder
	4 Integration of the Nios II System into a Quartus II Project
	4.1 Instantiation of the Module Generated by the SOPC Builder
	4.2 Programming and Configuration

	5 Running the Application Program
	5.1 Using a Nios II Assembly Language Program
	5.2 Using a C-Language Program

