Fixed-Point modeling &

!'_ analysis

* From floating- to fixed-point

Floating-Point Fixed-Point
“unlimited” range limited precision

i From floating- to fixed-point

n Steps

= refine the floating point model towards fixed-point
precision: model conversion

Floating-Point Fixed-Point

i From floating- to fixed-point

n Steps

= refine the floating point model towards fixed-point
precision: model conversion

» fixed-point design space exploration
= Scale properly (avoid overflow, minimize quantization error)
= decide on the minimum required bit widths

fixed-point

ﬁ design

2\
-y

Floating-Point Fixed-Point @

i Scope

= Objectives

= refine the floating point model towards fixed-point
precision: model conversion

= fixed-point design space exploration

= this requires

= fixed-point modeling means

= SQNR constraints

Fixed-point modeling

s C/C++ does not provide fixed-point data types

= except for bool and char, the bit widths depend on
the compiler and the computer architecture

= but we need bit true data types...

data type bit width
bool 1

char 8

short >16

int >short
long >32, >int

Fixed-point modeling

s SystemC extends C++ and provides support for
= concurrent behaviors
= hierarchical decomposition
= communication
= time modeling
n ...
n fixed-point
m SC_int, sc_uint
m SC_fixed, sc_ufixed

S Y ST EMOC

7

Fixed-point modeling

= fixed-point representation: word length
= WI: total word length

= iwl: integer word length
MSB LSB .
. . q
O | -+ | by | by i | Byyrw oo 1 l
alue ny,
0.11
binary | 0.10/74
point [oo f”
olger” -
=n, =slope-n_+bi VT floating point
nﬂ nfx slope nq las . ! Vgle;len%ﬂpom
1.0 |
r iwl=1 ' 100 A~ / |
if unsigned: n,= Z b,2' slope bias = 0
1 i=iwl—wl

iwl=2
if signed :n,=-b,, | M 4 Z b2

i=iwl—wl

i Fixed-point modeling

= fixed-point representation: quantization mode

m
t

t

etermines the behavior of the fixed point type when
e result of an operation generates more precision in
he LSBs than is available

pram—
Ve
3q e
7
29 —
e
aT A

SC_RND

SC_TRN 9

i Fixed-point modeling

= fixed-point representation: overflow mode
= determines the behavior of the fixed point type when

the result of an operation generates more precision in
the MSBs than is available

YT y T5
-4 / 4 y
- ./ [] [] - ./
3 y 3 y
- 2 'S - »
/s 2 V4
6 5 4 3 2 1 P)1. 2 3 4 5 6 e
R R N R AT T S A T S S S T T S S 7
T T T T 1 T T 1 T T 1 1 1 I | I | I I I
8 -7 6 -5 4 -3 -2 -1 1 2 3 4 5 6 7 8 9
‘/ -+ -1 ./ 1 []
4 /s
e 2 ' -2
/ /
o -3 4 --3
/ s/
» -4 » -4
Vs P
-5 -5
SC_SAT SC_WRAP 10

i Fixed-point modeling

= more infos: SystemC V2.0 User’s Guide, Ch. 7
= still...

fixed-point

\J\I\J U\J \J \J nkgl‘.‘l'r

simulation d

Floating-Point Fixed-Point design Fixed-Point
space exploration

= HJ81: executable model supporting floating- and
fixed-point precision
= backward compatible i

i Fixed-point modeling H]81

= Support for floating- and fixed-point

void rgb2yuv(D_PIXEL r, D_PIXEL g, D_PIXEL b,
D_PIXEL &y, D_PIXEL &u, D_PIXEL &v) {

D_RGBCOEFF coeff[] = { 0.299, 0.587, 0.114,
-0.1687, -0.3313, 0.5, e i
0.5, -0.4187, -0.0813); specification of the

vy = coeff[0] * r + coeff[l] * g + coeff[2] * b; fixed_point precision
u = coeff[3] * r + coeff[4] * g + coeff[5] * b + 128; .
* r o4 * g + coeff[8] * b + 1 and behav|our

le in floating-point mode.
ompile in fixed-point mode.

// Comment the following line in ord
// Uncomment the following line in g
#define FINITE

#define D_PIXEL FX_CHAR (SC_TRN, SC_WRAP)
#define D_RGBCOEFF FX_FLOAT ([,[,] A)

12

i Fixed-point modeling H]81

= Support for floating- and fixed-point

void rgb2yuv(D_PIXEL r, D_PIXEL g, D_PIXEL b,
D_PIXEL &y, D_PIXEL &u, D_PIXEL &v) {

D_RGBCOEFF coeff[] = { 0.299, 0.587, 0.114,
-0.1687, -0.3313, 0.5,
0.5, -0.4187, -0.0813};
y = coeff[0] * r + coeff[l] * g + coeff[2] * b;
u = coeff[3] * r + coeff[4] * g + coeff[5] * b + 128; .
coeff[6] * r + coeff[7] g + coeff[8] * b + SeIeCtlon Of the

precision mode

er to compile in floating-point mode.

// Comment the follg
§ in order to compile in fixed-point mode.

// Uncomment the
#define FINITE

#define D_PIXEL FX_CHAR (SC_TRN, SC_WRAP)
#define D_RGBCOEFF FX_FLOAT ([],[]/] A)

13

i Fixed-point modeling H]81

= Support for floating- and fixed-point

void rgb2yuv(char r, char g, char b,
char &y, char &u, char &v) {

// Comment the following line in order to compile in floating-point mode.
// Uncomment the following line in order to compile in fixed-point mode.
//#define FINITE

#define D_PIXEL FX_CHAR (SC_TRN, SC_WRAP)
#define D_RGBCOEFF FX_FLOAT ([],[]/] A)

14

i Fixed-point modeling H]81

= Support for floating- and fixed-point

void rgb2yuv(sc_fixed<8,1,SC_TRN, SC_WRAP> r,
sc_fixed<8,1,SC_TRN, SC_WRAP> g,
sc_fixed<8,1, SC_TRN, SC_WRAP> Db,
sc_fixed<8,1,SC_TRN, SC_WRAP> &y,
sc_fixed<8,1, SC_TRN, SC_WRAP> &u,
sc_fixed<8,1,SC_TRN, SC_WRAP> &v) {

// Comment the following line in order to compile in floating-point mode.
// Uncomment the following line in order to compile in fixed-point mode.
#define FINITE

#define D_PIXEL FX_CHAR (SC_TRN, SC_WRAP)
#define D_RGBCOEFF FX_FLOAT ([],[]/] A)

15

‘L Fixed-point modeling H]81

= Support for floating- and fixed-point

// Comment the follogiaerlyd ' o MSeaw ' floating-point mode.

géegzizmﬁigiTghe fol Several data types in fixed-point mode.
available

which will be replaced by the corresponding

// Declare nej
// floating-
//

// Syntax:
// FX_DOUBLE (wl, iwl, g mode, o_mode) signed fixed or double
// UFX_DOUBLE (wl, iwl, g_mode, o_mode) unsigned fixed or double

data types,
Ed-point type.

// FX_FLOAT (wl, iwl, g_mode, o_mode) signed fixed or float

// UFX_FLOAT (wl, iwl, g mode, o_mode) unsigned fixed or float

// FX_CHAR (g_mode, o_mode) signed 8-bits fixed or char
// UFX_CHAR (g_mode, o_mode) unsigned 8-bits fixed or char
// FX_INT (iwl, g mode, o_mode) signed fixed or int

// UFX_INT(iwl, g_mode, o_mode) unsigned fixed or int

// FX_SHORT (iwl, g _mode, o_mode) signed fixed or short

// UFX_SHORT (iwl, g mode, o_mode) unsigned fixed or short
#define D_PIXEL FX_CHAR(SC_TRN, SC_WRAP)

#define D_RGBCOEFF FX_FLOAT ([], [, A)

my_types.h

i Fixed-point modeling H]81

= Your task
= define the data types you think are needed
= Specify bit widths, quantization mode, overflow mode
= change the model

= Verify the conversion is working fine
= same result as in floating-point mode
= acceptable degradation in fixed-point mode

17

