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ABSTRACT

In thes notes we will review the automata-theoretic verification method and propo-
sitional linear temporal logic, with specific emphasis on their potential application to dis-
tributed software verification.
An important issue in software verification is the establishment of a formal relation
between the concrete, implementation-level, software application and the abstract,
derived, automata-model that is the subject of the actual verification. In principle one can
either attempt to derive an implementation from a verified abstract model, using refine-
ment techniques, or one can attempt to derive a verification model from an implementa-
tion, using systematic abstraction techniques. The former method has long been advo-
cated, but has not received much attention in industrial practice.
The latter method, deriving abstract models from concrete implementations guided by
explicitly stated correctness requirements, has recently begun to show considerable prom-
ise. We will discuss it in detail.

1. Introduction

Programming is a human activity. Because even the most conscientious human can occasionally make mis-
takes, a professional software design process will normally include a careful system of checks and balances
that aims to intercept as many of the mistakes as possible, before a product ships to customers. It is our
premise that the fraction of mistakes intercepted can be increased, specifically for distributed systems
designs, if we complement traditional testing techniques with software model checking techniques.

Not all mistakes are equally easy to detect. Errors of syntax are easier to find than semantic errors, and
errors in sequentially executing, deterministic programs are easier to find than errors in multi-threaded,
non-deterministic systems. We focus here on the problem of detecting errors in distributed systems code:
network applications, data communications protocols, multi-threaded code, client-server applications, and
the like. We are particularly interested in algorithmic techniques that can be harnessed into tools, and that
can be integrated seamlessly into the software design cycle.

The goal of this introduction is to give a bird’s eye view of the field and place the main issues in software
model checking in context. We provide a brief introduction to the automata-theoretic checking process,
discuss the use of logic for the specification of program properties. In the remainder of the notes we will
also discuss formal program abstraction techniques, and a methodology for extracting verification models
directly from program source code.

Feasibility

First a word about the relevance of software model checking techniques in industrial practice. Formally, the
problem we are trying to solve can be shown to be PSPACE hard, e.g., [BZ83],[CM81]. In practical terms
this means that there is a serious problem in handling large problem sizes. There will always be such prob-
lems, no matter how powerful machines become, so there is a need for algorithms that can scale graciously
from exact to approximate solutions for growing problem sizes. As we shall see, such algorithms have
been developed.



Can formal verification techniques handle the type of problem sizes that occur in practice today? The per-
ception of most practitioners is that formal verification techniques are perhaps applicable to small exam-
ples, but not to any problem of real significance. This perception was formed and validated when the field
was in its infancy, in the mid seventies, but is rarely re-examined. Since we have data on the relative per-
formance of our verification tools for the last two decades, it can be interesting to see if the perception still
holds true today.

In 1980 we used a basic reachability analyzer, calledPan, to verify properties of a model of an experimen-
tal telephone switch developed at Bell Labs [H81]. The switch, and the model, was calledTpc, short for
The phone company. Through the use ofPan a number of design problems were uncovered in theTpc
software. A fully exhaustive verification was infeasible then; the complexity of the problem vastly
exceeded the constraints of the best machines available at that time.

We can recognize two major trends that have affected the feasibility of the formal verification of problems
such as these in the last two decades. The first is a series of algorithmic improvements that have helped to
reduce the complexity of the model checking problem. The second trend is the cumulative effect of
Moore’s curve: a surprisingly reliable predictor of increases in memory sizes and CPU performance. On
average, every 18 months the speed and memory size of the best available machine doubles. The effect of
these two trends on the feasibility of solving the verification problem forTpc is illustrated in Figure 1.

Fig. 1 — Feasibility of Model Checking — Memory Requirements.

Figure 1 shows the amount of memory that is available on the best available machine in each year between
1980 and 2000 (dotted), and the amount of memory that should minimally be available to solve the verifi-
cation problem for our firstTpc model (solid). The marks indicate successive algorithmic improvements in
the construction of the verifier, which itself slowly evolved from a basic reachability analyzer into a full
logic model checking system namedSpin [H97]. Mark 1 shows the memory requirements of our first algo-
rithm from 1980. Mark 2 shows the memory requirements when the proof approximation algorithm that
was introduced in 1987 [H87] is used at maximum precision (giving coverage that matches the one pro-
duced by a fully exhaustive reachability analysis). Mark 3 shows the drop in memory requirements when
partial order reduction techniques are used [HP94], and mark 4 a smaller drop when some additional model
reduction techniques are added [H99].

A very similar figure can be drawn for the runtime requirements of formal verification applications, as
illustrated in Figure 2. A reduction in the runtime requirements for a full verification of theTpc model can
then be measured dropping from 7 days in 1980 to 7 seconds today, again by virtue of the combination of
algorithmic improvements and the effect of Moore’s curve. It should be added that the problem used to
produce these data was not chosen to enhance any aspect of these trends. For more carefully selected prob-
lems, for instance, the improvements of individual algorithms can be made to look significantly better. Our
purpose here is, however, not to showcase specific algorithms, but to illustrate the existence of a trend.

The nature of this trend is clear. Even if no further algorithmic improvements are made, software verifica-
tion techniques will be able to handle increasingly complex problems by virtue of the exponential increase
in the capabilities of available machines. This increase in power has meant that today we can perform



Fig. 2 — Feasibility of Model Checking — Runtime Requirements.

formal verification on fairly detailed models of telephone switching software [HS00]. What a continuation
of the trend could mean for tomorrow can only be speculated. Suffice it to say that the prospects are good.

Modeling

For arbitrary programs with potentially unbounded capacity to store and retrieve information, no algorith-
mic techniques can exist for mechanically provingall properties of interest. In this form, the problem is
undecidable [T36]. If we can put a finite bound on the possible memory use of a program, we obtain a sys-
tem with a finite number of possiblestates (i.e., configurations of memory), that can in theory be enumer-
ated. We can conceive of constructing the execution graph of such a program, to capture the
successor/predecessor relation for all reachable memory configurations. This approach is not practical,
though, considering the potential size of the graph and the likely computational expense of computing, stor-
ing, and analyzing it. For distributed systems the problems is still more severe. We may now have to deal
with all possible combinations of the memory configurations of all concurrently executing processes. At
this level of detail, the solution of the problem remains well beyond reach.

For many properties of interest, though, the fully detailed representation of an execution graph contains far
more information than is needed for verification. In many cases, even a coarse abstract representation of
the graph suffices. This abstract representation can be obtained by removing unwanted detail from the sys-
tem description (i.e., the program) in such a way that properties of interest are preserved. The abstracted
system description can be used to generate a smaller abstract execution graph, which can effectively be
used in a verification process. The abstract system description is called amodel of the original system.

The purpose of the construction of a model is to facilitate analysis: by using abstraction we can trade imple-
mentation detail for analytical power. The model could be created as a mathematical description, as a set of
axioms, rules of inference, and theorems to be proven. In that case, both model and proof are most likely
constructed manually, perhaps with some assistance from mechanical or human proof checkers. In some
cases the model could also conceivably be created as a physical structure: a prototype device of which the
basic properties may be verified by measurement.

Automata

We will focus on models that are expressed asautomata. The automata models can in some cases be
extracted from program source and analyzed mechanically. The potential automation of the verification
process gives this approach an advantage over manual proof methods, although it is understood that
automation may also bring limitations to the potential scope of a verification. Model construction and
model extraction are based on systematic abstraction, such as slicing [T95], data hiding, and mapping
[CLG94],[CD00],[V00]. We will discuss abstraction and automated model extraction techniques in part IV
of these notes.



Logic

We have so far suggested that we may be able to obtain automata models from program sources, and that
these models may suffice for the analysis of properties. We have not yet discussed how these properties can
be expressed in such a way that automated analysis becomes possible.

Propositional linear temporal logic (LTL) allows us to make very concise statements about required causal
relations between the events in a distributed system [P77],[E90]. Each LTL formulae, furthermore, can be
converted mechanically [GPVW95] into anω-automaton [T90] that can be used in the verification process.
An automata-theoretic verification method [VW86] proceeds follows.

1. The property to be verified is expressed as a formulaf in LTL, and thennegated to ¬ f. The nega-
tion reverses the meaning of the formula to capture all system behavior that deviates from the origi-
nal requirement. The negated LTL formula is converted into anω-automatonA, using the procedure
outlined in [GPVW95],[EH00]. The negated property automaton is designed to accept all system
behavior that satisfies the negated formula, and that therefore violates the original requirement.

2. The property is used to define an abstraction which guides the definition of an automata model for
the system to be verified. The resulting system modelS captures all possible system behavior at the
required level of abstraction.

3. A model checker, such asSpin [H91], can now be used to compute the language intersectionG of
property automatonA and system automatonS, as illustrated in Figure 3. This language intersection
contains all feasible violations of the original LTL formulaf. If it is empty, no violations of the prop-
erty are possible.

4. An error sequence (any violation uncovered in the last step) is interpreted at the source level of the
original program (i.e., lifted) and reported to the user for action.

Fig. 3 — Intersection G of System S and Automaton A Derived from LTL Formula¬f.

There are many issues that we have silently skipped over, but that need carefully consideration before this
method can be used.

• Distributed systems often have dynamically changing numbers of active processes. In general there
will be one separate automaton model for each asynchronously executing process in the system.

• The verification framework should apply both to finite, terminating, system executions, and to poten-
tially infinite executions (ω-runs) [VW86],[T90].

• Optimization and reduction techniques must be considered to help reduce the amount of work
required for the computation of language intersections [P96],[EH00]. Despite all that, the computa-
tional complexity of verification can still exceed the bounds of available resources.Best-effortrelief
strategies should be available for these cases.

• The validity of an abstraction cannot be taken for granted. An incorrect use of abstraction may pro-
duce false error reports or cause valid error reports to be missed.

• And finally, we should take into account that a system can only be verified subject to a reasonable set



of assumptions about theenvironment in which it is used. Just like the formulation of logic proper-
ties, it can be hard to derive such assumptions automatically. The validity of a verification result will
always be conditional on the accuracy of these formalized assumptions. The assumptions should
therefore be conservative.

Overview

In the remaining sections of these notes the details of the software verification method sketched above will
be filled in. In Section 2 we begin by reviewing the automata theoretic verification method, the definition
of ω-automata andω-acceptance. We discuss the formal relation between propositional linear temporal
logic andω-automata, and consider the basic procedure for on-the-fly verification used in an existing LTL
model checkerSpin. In Section 3 we look at optimization and reduction strategies, including model reduc-
tion, partial order reduction, and proof approximation methods. In Section 4 we discuss model extraction,
and systematic abstraction techniques. In Section 5 we reflect briefly on our findings.

2. Automata

We will model the actions of processes in a distributed system in terms ofstates andtransitions (i.e., state
transformers). These notions are captured in the definition of a finite automaton. Automata models are
intuitive and have been used frequently for the description of distributed systems, also by practitioners. In
particular there is a long history of their use for the definition of data communication protocols. The well-
known definition of the ’alternating bit protocol’ from 1969, for instance, was based on an automaton
description [BSW69].

2.1. Finite automata

We begin with a standard definition of a finite automaton, defined over finite executions. We then general-
ize the definition to capture also infinite executions.

A finite automaton is a tuple {S,s0, L, F, T}, with S a finite set of ’states,’s0 ∈S, is a predefined
’initial state,’ L is a finite set of labels or ’symbols,’ F⊆S, is a set of ’final’ states, and T⊆S×L×S, is
the ’transition relation.’

The structure of a finite automaton can be represented by a graph, as illustrated in Figure 4, Vertices repre-
sent states, edges represent transitions, and labels appear as annotations on the edges. A path through this
graph can then be interpreted as an execution, called a ’run,’ of the automaton (we will define it more pre-
cisely below). A run is said to beaccepted by the automaton if it starts in the initial state and ends in one of
the final states in set F. Of course, this particular notion of acceptance applies only to finite runs.

s0 s1

s2

s3

s4

α0

α1α2

α3

α4

α5

Fig. 4 — The Structure of a Finite Automaton.

The labels from set L can be treated as abstract representations of arbitrary program ’actions.’ This would
include access to data objects, to modify or to test their value (their ’state’). Any run of the automaton then
defines a sequence of labels. For a fixed interpretation of the labels in a givencontext we can restrict the
notion of acceptance to only those runs that would be feasible under the given interpretation. The action
that is represented by a label, for instance, may only be feasible (executable) under precisely stated condi-
tions. A strict definition of the interpretation of labels in a given context will not be needed for these notes,
so we will not pursue it here.

For the example automaton in Figure 4 we have S = {s0, s1, s2, s3, s4 }, L = { α0, α1, α2, α3, α4, α5 },
F = { s4 }, and T = { (s0 , α0 , s1), (s1 , α1 , s2), (s2 , α2 , s1), (s2 , α3 , s3), (s3 , α4 , s2), (s2 , α5 , s4),



}. This automaton could be used to model the life of a user process in time-sharing system, as controlled
by a process scheduler. States0 then represents the ’Initial’ state where the process is being instantiated,s1

is the ’Ready’ state,s2 is the ’Running’ state,s3 is the ’Suspended’ state, e.g., where the process is blocked
waiting for a system call to complete, ands4 is the ’Final’ state, reached if and when the process termi-
nates. An interpretation of the symbols in set L for this system can be:α0 is the scheduler’s ’Start’ action,
α1 is ’Run,’ α2 is ’Suspend,’α3 is ’Block,’ α4 is ’Unblock,’ andα5 is ’Stop.’ An acceptable finite run of
this system is the state sequence {s0, s1, s2, s4}, which corresponds to the sequence of scheduler actions
Start, Run, and Stop.

2.2. Runs

A more precise definition of therun of an automaton can be given as follows.

σ = (s0 ,s1 ,s2 , . . . ,sk ) is a run of finite state automaton {S,s0, L, T, F}, if and only if (iff)
(∀ i , 0≤ i < k : ∃ α,α ∈L ∧ (si ,α,si + 1 ) ∈T).

We can also define a run as an ordered set of labels from L instead of an ordered set of states from S. If the
automaton is non-deterministic, which is generally the case in software model checking applications, the
two definitions are of course not equivalent.

Set L defines the ’alphabet’ of label symbols. Each run of the automaton defines one or morewordsover
that alphabet. (Note that adjacent states in the run may be connected by multiple symbols.) In classic finite
state automata theory, a finite run is said to beacceptediff it terminates at a state within set F. The set of
words that correspond to accepted runs is referred to as thelanguageaccepted by the automaton.

A finite run σ = (s0 ,s1 ,s2 , . . . ,sk ) of finite state automaton {S,s0, L, T, F} is acceptediff sk ∈F.

We would like to be reason equally about terminating and non-terminating systems, though, and therefore
we need a broader definition of acceptance.

2.3. Bu
..
chi-acceptance

There are several ways to extend the notion of acceptance to infinite runs [T90]. We will use a simple
method called Bu

..
chi-acceptance.

An infinite run σ of finite state automaton {S,s0, L, T, F} is acceptediff it at least one state from set
F appears infinitely often inσ.

For the automaton in Figure 4, for instance, we could define the Running states2 as a Bu
..
chi-acceptance

state. In this case all infinite runs would then necessarily be accepting, since there exists no strongly con-
nected component in the graph of Figure 4 that excludess2.

A simple extension of finite runs will also allow us to interpret finite runs as special cases of infinite runs,
for the purpose of deciding acceptance.

Thestutter extensionof finite runσ = (s0 ,s1 ,s2 , . . . ,sk ) of finite state automaton {S,s0, L, T, F} is
the concatenation ofσ with sk

* : an infinite repetition of final statesk.

The infinite repetition of the final state of a finite run corresponds to the addition of a dummy self-loop
transition (sk ,ε,sk) to set T, minimally for each statesk in set F, whereε is a predefined label representing
a nil action.

A slightly more general definition of Bu
..
chi-acceptance is known asGeneralized Bu

..
chi-acceptance. In this

case, we allow for more than one set of final states F, and require that at least one state from each of these
final sets appears infinitely often in a run. An unfolding method, known as Choueka’s flag-construction
[C74], can be used to translate a Generalized Bu

..
chi-automaton into a standard one. We will see an example

of a generalized Bu
..
chi-automaton below

A number of interesting properties of Bu
..
chi-automata are decidable, specifically:

• non-emptiness: deciding whether a given B
. .
uchi automaton accepts any runs at all, and

• intersection: given two B
. .
uchi automata, constructing a new automaton that accepts precisely those

runs that are accepted by both of the given automata.

The model checking procedure relies on both of these methods.



2.4. Products of automata

The joint execution of two finite automata can be defined as product of automata. There are several ways
to define an automata product, reflecting differences in the assumptions about the semantics of joint behav-
ior in a distributed system.

Theautomata product of the finite automata {S A, s0
A, L A, F A, T A} and {S B, s0

B, L B, F B, T B} is the
finite automaton {S,s0, L, F, T}, such that S =S A ×S B, s0 = (s0

A, s0
B ), L = (L A ×L B ) ∪ ε, F = { (s,t)

s ∈F A ∧ t∈F B }, and T⊆S×L×S.

The interesting part is to provide a precise definition of the transition relation T. We can, for instance,
define it as follows:

T = { ( ( s,t) , (α,β) , (v,w) )  ( (s,α,v) ∈T A ∨ (α ≡ ε ∧s≡v) ) ∧ ( (t,β ,w) ∈T B ∨ (β ≡ ε ∧t≡w) ) } .

This definition allows for both joint and independent transitions, where one automaton changes state while
the other performs a self-loop onε. A ’joint’ transition can be used to model synchronization conveniently,
e.g. rendezvous operations. In most cases of interest we can also remove the joint operations from the defi-
nition without loss of generality. The result of a joint action can usually also be modeled with a sufficiently
finely grained interleaving of atomic actions.

The product AxB differs from the product BxA only in the naming conventions for states and transitions:
the graphs corresponding to these two products are isomorphic.

2.5. Logic and automata

The next important step we have to make is the establishment of a direct link between a general formalism
for expressing logical requirements on a distributed system and automata representations. That link is pro-
vided by propositional linear temporal logic.

Linear temporal logic (LTL) was proposed in the late seventies by Amir Pnueli as a formalism for reason-
ing about concurrent systems [P77]. The main notions used in the definition of temporal logic were derived
from earlier work onTense Logics for tightening arguments relating to the passage of time. Curiously, this
work did not originate in computer science but in philosophy [P57],[P67],[RU71].

Propositional linear temporal logic can be used to formally state properties of system executions with the
help of boolean propositions, the classic boolean relational operators, and a small number of new temporal
operators that we discuss next. The truth of a temporal formula is always defined over infinite runs.

If a temporal formulaf is valid (holds) forω-runσ, we write:

σ | = f.

We will write σ[i] to denote the suffix of a runσ starting at the i-th element, withσ[1] ≡ σ.

The first temporal operator we will discuss is the binary operatoruntil, first introduced in [K68], and repre-
sented by the symbolU. There are two variations of this operator, aweak version and astrong version.

Weak Until (U): ∀i, ( σ[i] | = (pUq) ⇔ σ[i] | = q∨ (σ[i] | = p∧ σ[i+1] | = (pUq))).

This definition does not require that sub-formulaq will eventually hold. The strong until operator, written
U, adds that requirement:

Strong Until (U): ∀i, ( σ[i] | = (pUq) ⇔ σ[i] | = (pUq) ∧ ∃ j, j≥i, σ[j] | = q).

There are two special cases of these definitions that are important enough that two separate operators are
defined for them. The first the case where the second operand of the weak until operator is false, which
leads to the definition of the unary operator, pronounced ’box’ orAlways.

Always ( ): ∀i, ( σ[i] | = p ⇔ σ[i] | = (pUfalse)).

This operator captures the important notion of safety orinvariance. The second special case is when he
first operand of the strong until operator istrue, which leads to the definition of the unary operator◊, pro-
nounced ’diamond’ orEventually.

Eventually (◊): ∀i, ( σ[i] | = ◊q ⇔ σ[i] | = (trueUq)).



This operator captures the important notion of inevitability orliveness.

There are many standard types of correctness requirements that can be expressed with the temporal opera-
tors we have defined. Two important types are defined below: recurrence and stability. A recurrence prop-
erty is any temporal formula that can be written in the form◊p; the dual property, written◊ p, is called a
stability property. The recurrence property◊p states that it is always true thatp will be satisfied at some
future point in the run. The stability property◊ p states that there is point in the run from wherep is invari-
antly satisfied.

There are other interesting types of duality. For instance, it is not hard to prove that in any context:¬ p
⇔ ◊¬p and¬◊p ⇔ ¬p. Some commonly used equivalence rules are listed below, cf. [MP91].

[1] ¬ p ⇔ ◊ ¬p
[2] ¬◊p ⇔ ¬p
[3] ¬(p U q) ⇔ (¬q)U(¬p ∧ ¬q)
[4] ¬(p U q) ⇔ (¬q)U(¬p ∧ ¬q)
[5] (p ∧ q) ⇔ p ∧ q
[6] ◊(p ∨ q) ⇔ ◊p ∨ ◊q
[7] p U (q ∨ r) ⇔ (p U q) ∨ (p U r)
[8] (p ∧ q) U r ⇔ (p U r) ∧ (q U r)
[9] p U (q ∨ r) ⇔ (p U q) ∨ (p U r)
[10] (p ∧ q) U r ⇔ (p U r) ∧ (q U r)
[11] ◊(p ∨ q) ⇔ ◊p ∨ ◊q
[12] ◊ (p ∧ q) ⇔ ◊ p ∧ ◊ q

2.6. Implication and causality

It can sometimes be hard to interpret the meaning of more complex temporal logic formulae. A common
case of confusion is to mistake logical implication for temporal causality. To state, for instance, that the
occurrence of event p (say, a request) will inevitably lead to the occurrence of event q (the corresponding
response), one would be tempted to write

p → q

which is incorrect. By the definition of logical implication, this formula would state merely that in the ini-
tial program state we must have (¬ p ∨ q). There is no statement on a required temporal relation between p
and q. Slightly better would be to write

p → ◊ q

but also this is most likely not what was intended, since it still requires that the initial condition holds pre-
cisely in the initial state. If p does not hold initially, no check at all is implied here for any future occur-
rences of p. Somewhat better again is therefore to write:

(p → ◊ q)

but even this is most likely not what the user meant. Clearly if event p never occurs, then the condition will
be vacuously true. If the user went to the trouble of writing down the more complicated form of the expres-
sion that includes q, there is probably an expectation that the trivial case

¬ p

does not apply (i.e., isnot satisfied). In this case it is wise to prove the absence of the trivial case explicitly
with a separate check. Note carefully that if it is acceptable that some runs contain p and some do not, it
will not suffice to prove that

¬ ¬ p ≡ ◊ p

because this states that p must eventually occur at least once inall runs. If p occurs insomebut notall
runs, neither◊ p, nor its negation ¬ p, will hold.



2.7. The next operator

There is one other standard temporal operator that we will exclude from our toolkit, even though it cannot
be defined in terms of the other operators. It is usually defined as follows.

Next (X): ∀i, ( σ[i] | = Xq ⇔ σ[i+1] | = q).

We have two reasons to reject the use of the next operator.

• The precise meaning of the operator is unclear in the context of concurrent systems, cf. [L83]. A run
of a concurrent system is typically given as an interleaving sequence of the runs of a number of par-
ticipating processes. Whereas a ’step’ in the run of a sequentially executing single process reflects the
progression of a computation in a meaningful way, the same is not necessarily true for a ’step’ in the
run of a concurrent system. There is, for instance, no simple way to relate these steps to a global
notion of time. Consider, for instance, the effect of network latency, message overtaking, message
duplication, etc.

• We can define a powerful optimization of the verification process [HP94] for the stutter-invariant
subset of full LTL. Any LTL formula that can be written without the use of the next operator is guar-
anteed to be stutter-invariant and vice-versa any stutter-invariant propositional LTL property can be
written without the next operator [P97].

2.8. Verification

The most significant benefit of the use of LTL in a model checking procedure is that for every LTL formula
one can construct a Bu

..
chi-automatonA that accepts precisely the runs that satisfy the formula

[VW86,GPVW95,V96,DGV99,EH00,SB00]. By constructing thisproperty automaton for a given LTL
formula, we can now find all runs thatsatisfy the formula in a systemS by intersecting the property
automatonA with the system automatonS. Better still, by negating the property before the property
automaton is constructed, we can similarly find all runs thatviolate the original property. Computing the
intersection amounts to computing an automata product, a well understood procedure. This, in a nutshell,
then is the automata-theoretic verification method. In the following we will first consider the relation
between LTL formula and Bu

..
chi-automata a little more closely, and then look at the computation of the

intersection product.

2.9. Construction

The essence of the procedure that can be used to construct a Bu
..
chi-automaton from an LTL formula is as

follows. First we need to define the closure of a temporal formula.

Theclosure of temporal formulaf, Cl(f), is the set of all sub-formulae off and their negations.

For example, ifp is a boolean propositional symbol, thenCl(◊ p) ≡ { ◊ p, ¬◊ p, p, ¬ p, p, ¬p }.

Let Prop(f) be the set of all boolean propositional symbols inf. For the example,Prop(◊ p) ≡ { p }. Each
state in the automaton that is constructed contains a list of those subformulae from Cl(f) that are satisfied in
that state. We refer to that list for states asAnn(s).

Given a temporal formulaf, the correspondingGeneralized Bu
..
chi-automaton is { S ,s0, L, T, F }, where S

= 2Cl ( f ), s0 is the state in S for whichAnn(s0) ≡ f, L = 2Prop ( f ), and F = {F1, ...F n }. That is, each element
of the L corresponds to a unique truth assignment to the propositional symbols inProp(f).

Transition relation T is now defined as follows:

(s,γ,s’) ∈ T if and only if the truth assignmentγ ∈ L satisfies all non-temporal
formulae inAnn(s), and
((p U q) ∈ Ann(s) → ( q ∈ Ann(s) ∨ ( p ∈ Ann(s) ∧ (p U q) ∈ s’ )))

There is one sub-set in F for each sub-formula in Cl(f) that contains a strong until operator. Assume there
aren such sub-formulae. For the i-th sub-formula(p U q) in Cl(f), ( 1≤i≤n), we have:

F i = { s : (p U q) ∈/ Ann(s) ∨ q ∈ Ann(s) }

Only the strong until sub-formulae contribute to the Bu
..
chi-acceptance conditions. We can use Choueka’s



flag constructionmethod [C74] to convert the generalized Bu
..
chi-automaton into a standard one. If we con-

sider the automaton as a graph this can be done by makingn copies of the graph, numbered 1..n. We then
change the edges exiting from all states inF i in the i-th copy of the graph, ( 1≤ i < n) to point to their suc-
cessor in the (i+1)-th copy of the graph, and the edges exiting from the states inFn in the n-th copy of the
graph are redirected to their successors in the 1st copy. Finally, only the states in setFn in the n-th copy of
the graph are preserved as Bu

..
chi-accepting states. All other states are made non-accepting. To be accepted,

any infinite run in the final automaton must now necessarily include at least one state from each set in F,
which secures that all strong untils will be satisfied in the run.

The above construction can be improved significantly with an on-the-fly construction that avoids creating
redundant states. The basic algorithm for doing so was introduced in [GPVW95]. Further improvements
can be found in [DGV99],[SB00],[EH00]. As an example, the automaton that corresponds to the formula
◊ p, as computed by theSpin model checker [H97], is shown in Figure 5.

s0 s1

p
true p

Fig. 5 — Non-Deterministic Bu
..
chi Automaton for LTL formula◊ p.

2.10. Model checking

Assume we are given a finite automaton representing a system S = {SS, s0
S, LS, FS, TS} and a propertyf of

S expressed in LTL. S is generally defined as the product of smaller component automata representing con-
current processes.

Propertyf and its negation¬f, contains propositional symbols as operands, where the truth-value of each
proposition is defined as a boolean expression over the states of S. (That is, for any given state of S, any
given propositional symbol evaluates to either true or false.)

If we convert¬f into Bu
..
chi-automaton A = {SA, s0

A, LA, FA, TA}, the labels in LA will always be boolean
combinations of propositional symbols, without temporal operators. For each state in S we can evaluate the
expression for each such label, and determine its truth value. Let Eval(α,s)be the result of evaluating label
α ∈LA at states∈SS.

To compute the intersection of the automata S and A we can compute their automata product with a
restricted transition relation defined as follows:

T = { ( ( s,t) , (α,β) , (v,w) )  ( (s,α,v) ∈TS ∧ (t,β,w) ∈TT) ∧ Eval (β, s )≡true} .

All states inSS are defined to be accepting by settingFS = SS. Any infinite run accepted by this intersec-
tion product of S and A now corresponds to a run of S for which the¬f is satisfied and therefore the origi-
nal propertyf is violated.

2.11. Complexity

The computational complexity of the model checking procedure is clearly linear in the size of the product
of S and A. This statement, however, hides two basic facts:

1. The size of A can beexponentialin the size of the LTL formulaf, measured as the number of tempo-
ral operators used.

2. The size of S can beexponentialin the number of component automata that is used to compute it.

Although both observations seem equally pernicious, the first is far less so than the second. Temporal for-
mulae of practical value contain only few temporal operators, and the property automata generated from
these formula typically contain very few states, typically between two and five (cf. Figure 5). The precise
meaning of formulae that generate larger automata can be hard to determine, and they are therefore of lim-
ited value. The number of components in a large concurrent system, however, can only be restricted with
abstraction techniques, which in themselves need justification before they can be relied upon in verification.
The typical size of a system automaton S can easily exceed millions of states, and is the true source of com-
plexity in model checking applications. Optimization techniques can be used to restrict the size of both A



and S.

2.12. On-the-fly verification

The model checking procedure we have outlined lends itself well to an implementation that allows on-the-
fly verification. This means that we can instrument the verification system in such a way that it can detect
the presence of a violation of the property before the intersection product of system and property automata
is fully computed, and in many cases even without construction the full system S. First observe that violat-
ing runs are always infinite runs that contain at least one accepting state infinitely often. This means that
there must exist at least one accepting state in the intersection product of S and A that is both reachable
from the initial state of the product and reachable from itself.

Proving that such an accepting state either exists or does not exist can be done with two basic depth-first
search procedures: first to detect all accepting states that are reachable from the initial state, and second to
identify the accepting states from this set that are reachable from themselves. The second part of the prob-
lem amounts to detecting cycles in a finite graph, and as such would be a good fit for Tarjan’s algorithm for
constructing the strongly connected components of a graph in linear time [T72]. In practice we can do
slightly better.

2.13. Cycle detection

The problem is to efficiently detect the existence of a cycle through an accepting state in a finite graph. In
the worst case the algorithm we use to solve this problem will visit every node in the graph, and therefore
the complexity cannot be less than linear in the size of the graph. But if the construction of the strongly
connected components can be avoided, this problem may be solved with lower overhead than Tarjan’s algo-
rithm.

Tarjan’s algorithm stores the nodes of a graph in a single depth-first traversal. Each node is typically anno-
tated with two integer numbers, alowlink and adepth-firstnumber, e.g. [AHU74]. This requires storing
with each node 2xlog(R) additional bits of information, to represent the lowlink and the depth-first number
of a node, if R is the number of nodes in the graph. In practice, with R unknown, one typically uses two
32-bit integers to store this information. We will explore an alternative method that allows us to solve the
cycle detection problem while adding just two bits of information to each node.

We begin by discussing a simple algorithm for a restricted class ofω-properties, i.e., proving the absence or
existence of non-progress cycles in a finite graph [H90],[H91]. The algorithm works by splitting the
depth-first search into two phases with the help of a two-state demon automaton. Next we discuss a
stronger two-phase search algorithm that can be used to prove the absence or existence of acceptance
cycles, as required for LTL model checking [CVWY92],[HPY96].

2.14. Non-progress cycle detection

We begin by taking the product of system automaton S with the two-state automaton D illustrated in Figure
6. Automaton D can non-deterministically decide to move from its initial states0 into an alternate states1,
where it will then stay forever. The label on this transition isε, the nil-action. We assume that zero or
more states in the automaton S have been identified asprogressstates. We will be interested in finding any
infinite run that contains only finitely many such progress states. This corresponds to solving the model
checking problem for LTL properties of the type◊ np, with np a predefined state property that istrue if
and only if the system is not in a progress state.

s0

ε
s1

ε

Figure 6 — Two-State Non-deterministic Automaton
for Detecting Non-Progress Cycles.

We compute the asynchronous product of S and D, and perform a slightly modified depth-first search in the
reachability graph for that product. Naturally, the product will be at most twice the size of S, containing one



copy of each state with D in states0, and possibly one more copy with D ins1.

Each state s in the product is a tuple consisting of a state of D and a state of S. Let Dm(s)≡ true if D is in
states0, and letNp(s)≡ true if s is not a progress state. The search starts from the initial state of the prod-
uct of S and D, with D in states0. The non-progress cycle detection algorithm maintains a setvisitedof all
states it has encountered in the search, and a searchstackof states currently being explored.

dfs_A(s)
{

add s to visited

if Dm(s) or Np(s)
{ push  s onto stack

for each successor s’ of s
{ if  s’ not in visited

{ dfs_A(s’)
} else if s’ in stack and ¬ Dm(s’)
{ report  non-progress cycle

stop
} }
pop s from stack

}
}

The algorithm ignores all successors of progress states as soon as D reaches states1. Every cycle that
exists with D in states1 is therefore necessarily a non-progress cycle.

Property. If non-progress cycles exist,dfs_A() will report at least one of them.
Proof. Suppose there exists a reachable state that is part of a non-progress cycle, i.e., it can be
reached from itself without passing through progress states. Consider the first such state that is
entered into the second state space (upon the transition of D to its alternate state), and call itr.
Stater is reachable from itself in the second state space and must find itself in the depth-first search
belowr unless that search truncates at a previously visited state outside the current search stack. Call
that previously visited statev. We know thatr is reachable fromv (or else it would not blockr from
reaching itself) and also thatv is reachable fromr. This means that alsov is reachable from itself in
the second statespace viar. This, however, contradicts the assumption thatr was the first such state
entered into the second state space. This means thatr either revisits itself or a successor ofr revisits
itself before that happens. In both cases the existence of a non-progress cycle is reported.

Whenever a cycle is detected, the corresponding run can be reproduced from the contents of the stack: it
will contain a finite prefix of non-repeated states, and a finite suffix, starting at the state within the stack
that was revisited, with only non-progress states. This capability to produce exact counter-examples that
demonstrate the violation of a property is critical in a model checking system.

To implement the algorithm it is not necessary to store two full copies of each reachable state. It suffices to
store the states once with the addition of just two bits of memory [GH93]. The first of the two bits records
if the state was encountered in the first statespace, and the second bit records if the state was encountered in
the second statespace. Initially both bits are off. We can encounter only the bit combinations 01, 10, and
11, but not 00. (The state is neither present in the first nor in the second statespace for bit combination 00.)
States may be either encountered first in the second statespace, and later in the first statespace, or vice
versa. One bit, e.g. to record only the state of D, therefore would not suffice.

This non-progress cycle detection algorithm was first implemented in 1988 and later incorporated inSpin
[H90],[H91]. An stronger version of this type of two-phase search algorithm was introduced in
[CVWY92]. This algorithm is known as thenested depth-first search.



2.15. Nested depth-first search

This time the transitions of D are placed under the control of the search algorithm. The calldfs_B(s,d)
performs a depth-first search from states in S and stated in D. Let Acc(s) ≡ true if and only if state s is
accepting. The search starts with the calldfs_B(s0, s0)

dfs_B(s, d)
{

add s to visited

push s onto stack
for each successor s’ of s
{ if s’ not in visited

{ dfs_B(s’, d)
} else if s’ ≡ seed and d≡s 1

{ report acceptance cycle
stop

} }
if d≡s 0 and Acc(s)
{ // remember the root of the second search

seed = s
// perform second search in postorder
// with demon moved to state s 1

dfs_B(s,s 1)
}
pop s from stack

}

The search tries to locate at least one accepting state that is reachable from itself. Automaton D can move
from its initial state on at accepting states in S and the move is explored only after all successors of the
accepting state have been explored (i.e., in postorder). It is now no longer sufficient for the second search
to find any state within the depth-first search stack, we must require that the seed state from which the sec-
ond search was initiated itself is revisited. The proof of correctness for this version of the algorithm is as
follows [CVWY92].

Property. If acceptance cycles exist,dfs_B() will report at least one of these.

Proof. Let r be the first accepting state reachable from itself for which the second search is initiated.
Stater cannot be reachable from any state that was previously entered into the second state space.
Suppose there was such a statew. To be in the second state spacew either is an accepting state, or it
is reachable from an accepting state. Call that accepting statev. If r is reachable fromw in the second
state space it is also reachable from v. But, if r is reachable fromv in the second state space, it is also
reachable fromv in the first state space. There are now two cases to consider. Either (a) r is reach-
able fromv in the first state space without visiting states on the depth first search stack, or (b) it is
reachable only by traversing at least one statex that is on the depth first search stack (cf. Figure 7).
In case (a),r would have been entered into the second state space beforev, due to the postorder disci-
pline, contradicting the assumption thatv is entered beforer. In case (b),v is itself an accepting state
reachable from itself, which contradicts the assumption thatr is the first such state entered into the
second state space.



x

v

r

Fig. 7 — States x, v, and r.
Stater is reachable from all states on the path fromr back to itself, and therefore none of those states
can already be in the second statespace when this search begins. The path therefore cannot be trun-
cated andr is guaranteed to find itself in the successor tree.

Like dfs_A, this algorithm requires no more than two bits to be added to every reachable state in S, so the
overhead remains minimal. A significant advantage of this method of model checking is also that the entire
verification procedure can be performedon-the-fly: errors are detected during the exploration of the search
space, and the search process can be cut short as soon as the first error is found. It is not necessary to first
construct an annotated search space before the analysis itself can begin.

We can check non-progress properties with algorithmdfs_B by defining the temporal logic formula◊ np,
with np equal totrue if and only if the system is in a non-progress state. The automaton that corresponds to
this formula is a two-state automaton shown in Figure 8.

s0

true

np
s1

np

Fig. 8 — Two-State automaton for◊ np.
To perform model checking we can now take the intersection product of the automaton in Figure 8 with
system S, and use algorithmdfs_B to detect the accepting runs. We thus potentially incur two doublings
of the search space: one due to the nested search inherent indfs_B and one due to the product with the
property automaton from Figure 8. The earlier algorithmdfs_A solves this specific problem more effi-
ciently by incurring only the doubling from D. The advantage ofdfs_B is nonetheless that it can handle
any type of LTL property, not just non-progress properties.

3. Reduction

A simple and useful type of data object in distributed systems is the fifo (first-in first-out) message queue.
The queue can be used to store data, or ’messages,’ exchanged between processes in the order in which they
were received. In a typical distributed system there is at least one message queue per asynchronous process,
with a capacity to store hundreds of messages, each selected from a fairly broad set of possible messages.
How feasible would it be to analyze such systems directly, without any form of reduction or abstraction?

Suppose we haveq such queues, each with enough capacity to hold up tos messages, withm distinct types
of messages. In how many ‘states’ can this set of data objects be? Each queue can hold between zero ands
messages, with each message being a choice of one out ofm, therefore, the number of statesRQ is

RQ =


i = 0
Σ
s

mi




q

.

Figure 9 shows how the number of states varies for different choices of the parametersq, s, andm.
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Fig. 9 — Number of Possible States for q Message Buffers.
With s Buffer Slots and m Message Types

In the top-left graph of Figure 9, the parameterss andq are fixed to a value of 2, and the number of mes-
sage types is varied from 1 to 10. There is a geometric increase in the number of states, but clearly not an
exponential one. In the top-right graph, the parametersm andq are fixed to a value of 2, and the number of
queue slotss is varied. This time there is an exponential increase in the number of states. Similarly, in the
bottom-left graph, the parametersm ands are fixed, and the number of queues is varied. Again, we see an
exponential increase in the number of states. Worse still, in the bottom-right graph of the figure, only the
number of message types is fixed and the parameterss andq are equal and varied from 1 to 10. As can be
expected, the increase is now doubly exponential. The number of possible states quickly reaches astronom-
ical values.

3.1. Modeling

The example illustrates the importance of abstraction, reduction, and intelligent model construction. Expo-
nential effects can quickly make simple the properties of an uncarefully constructed model intractable, but
inversely they can also help the model builder to prove subtle properties of complex systems by adjusting
carefully chosen parameters. It is the objective of design verification to find ways to construct tractable
models for software applications, so that their properties can be verified formally.

Call E the set of all possible runs of a given system. A model checking algorithm will attempt to demon-
strate thatE does not contain any run that violates a correctness requirement. Now consider a different sys-
tem E ′ that contains all the runs contained in setE, and many more that are not contained inE. Now
clearly, if E contains a violating run, than so willE ′, but not vice versa. This means that a reduction or
abstraction method that extends the number of runs of a system, but that provably cannot remove any, has
the desirable property that it is fail-safe. Abstractions of this type can dramatically reduce the number of
reachable states of a system. Note that we can generalize a problem by removing constraints from it. The
behavior of a model that is less specific often can be represented with fewer states.



3.2. Example – a file server

Assume our task is to verify the correctness of a transfer protocol that is used to access a remote file server.
Our first obligation is to determine precisely which correctness properties the transfer protocol must have,
and what may be assumed about the behavior of the file server and of the transmission channel.

Consider first the transmission channel. Assume the channel is an optical fiber link. The verifier’s job is
not to reproduce the behavior of this fiber link at the finest level of detail. The quality of a verification does
not improve when we attempt to do so.

The model we construct should represent only those behaviors that are relevant to the verification task at
hand. It need not contain information about the causes of those behaviors. If the fiber link has a non-zero
probability of errors, than the possibility of errors must be present in our model, but little more. The types
of errors modeled could include disconnection, message-loss, duplication, insertion or distortion. If all
these types of error are present, and relevant to the verification task at hand, it should suffice to model the
link as a one-state demon that can randomly disconnect, lose, duplicate, insert, or distort messages.

A fully detailed model of the link could require thousands of states, representing, for instance, the cluster-
ing of errors, or the nature of distortions. For a design verification of the protocol, however, it not only suf-
fices to represent the link by a one-state demon: doing so guarantees a stronger verification result that is
independent of clustering or distortion effects. A model that randomly producesall relevant events that can
be part of the real link behavior satisfies the requirements for a fail-safe reduction strategy. It might add
error runs, but it cannot remove them.

Next, consider the file server. It can receive requests to create and delete, open and close, read and write
distinct files. Each such request can either succeed or fail. A read request on a closed file, for instance, will
fail. Similarly, a create or write request will fail if the file server runs out of space. Again, for the verifica-
tion of the interactions with the file server, we need not model in detail under what circumstances each
request may succeed or fail. Our model of the server can again be a one-state demon that randomly accepts
or rejects requests for service, without even looking at the specifics of the request.

Our one-state server would be able to exhibit behaviors that the real system would not allow, e.g., by reject-
ing valid requests. All  behaviors of the real server, however, are represented in the abstract model. If the
transfer protocol can be proven correct, despite the fact that our model server may behave worse than the
real one, the result is stronger than it would have been if we had represented the server in more detail. By
generalizing the model of the file server, we separate the correctness of the transfer protocol from detailed
assumptions about on the server. The model that randomly producesall relevant events, is a fail-safe gen-
eralization of the server.

Finally, let us consider the number of message types and message queues that are needed to represent the
interaction of user processes with the remote file server. If no single user can ever have more than one
request outstanding, we need minimally three distinct types of messages, independent of how many distinct
services the remote system actually offers. The three message types arerequest, accept, andre j ect.

If there areq users and only one server, the server must of course know which response corresponds to
which request. Suppose that we use a single queue for incoming requests at the server, and mark each
request with a parameter that identifies the user. This givesq distinct types of messages that could arrive at
the server. If q×s is the total number of slots in that queue, the number of distinct states will be:

i = 0
Σ
q×s

q i .

What if we replaced the single queue withq distinct queues, each ofs slots, one for each user? Now we
need only one type of request, and the number of queue states is now (s + 1 )q. Which is better? Note that
every feasible state of the multiple queues can be mapped to a specific state of the single queue, for instance
by simply concatenating alls slots of allq queues, in numerical order, into theq×s slots of the single
queue. But the single queue has many more states, i.e., all those states that correspond to arbitrary inter-
leavings of the contents of the multiple queues. With these parameters, then, it can make a large difference
in complexity if we replace a single queue with a set of queues. To get an idea of the difference, assume
s = 5 andq = 3, then the total number of states of all multiple queues combined is (s + 1 )q = 63 = 216,
and the total number of states of the single queue is



i = 0
Σ
q×s

q i =
i = 0
Σ
15

3i = 21 , 523 , 360

or about five orders of magnitude larger. If the relative order of messages between queues is irrelevant, this
can be a significant win. The choice of a model, then, and the level of detail that it represents, can have a
very substantial impact on the feasibility of verification.

Assuming that we have the smallest possible model that still captures the essential features of a system, is
there anything more we can do to reduce the complexity of the verification task? Fortunately, the answer is
yes. We will briefly sketch the intuition behind one such technique: partial order reduction. We will also
look in somewhat more detail at a different approach to the complexity problem: proof approximation.

3.3. Partial order reduction

Consider the automataT1 andT2 shown in Figure 10. In this representation the symbols that label the
transitions are used to represent assignment statements in a simple C-like programming language. In this
interpretation the two automata share access to a single integer data object namedg, and they each have
non-shared access to a private data object, namedx andy respectively. Assume the initial value of all data
objects is zero.

T1: s0

x = 1
s1

g = g + 2
s2

T2: s′0

y = 1
s′1

g = g *2
s′2

Fig. 10 — Automata T1 and T2.

The interleaving product of T1 andT2 is illustrated in Figure 11, where we have restricted ourselves to the
proper interleaving of transitions (i.e., excluding simultaneous transitions). The state labels in Figure 11 are
used to represent the values of the data objects, in the order:x,y,g.

The graph in Figure 11 represents all basic interleavings of the four statements in the systemsT1 andT2.
Clearly, the two interleavings of the transitions labeledx = 1 andy = 1 lead to the same resultx≡y≡1. The
two interleavings of the transitions labeledg = g + 2 andg = g *2, on the other hand, lead to two different
values forg.

The system is small enough that we can exhaustively write down all possible runs. There are only six:

σ1 = {(  0 , 0 , 0 ) , ( 1 , 0 , 0 ) , ( 1 , 0 , 2 ) , ( 1 , 1 , 2 ) , ( 1 , 1 , 4 )}
σ2 = {(  0 , 0 , 0 ) , ( 1 , 0 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 2 ) , ( 1 , 1 , 4 )}
σ3 = {(  0 , 0 , 0 ) , ( 1 , 0 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 2 )}
σ4 = {(  0 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 1 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 2 )}
σ5 = {(  0 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 2 )}
σ6 = {(  0 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 1 , 1 , 0 ) , ( 1 , 1 , 2 ) , ( 1 , 1 , 4 )}

or, if we write them down in a more familiar form, as sequences of transition symbols:

1: x = 1; g = g+2; y = 1; g = g*2;
2: x = 1; y = 1; g = g+2; g = g*2;
3: x = 1; y = 1; g = g*2; g = g+2;
4: y = 1; g = g*2; x = 1; g = g+2;
5: y = 1; x = 1; g = g*2; g = g+2;
6: y = 1; x = 1; g = g+2; g = g*2;

Sequences 1 and 2 differ only in the relative order of execution ofy = 1 andg = g+2, which are indepen-
dent operations. Similarly, sequences 4 and 5 differ in the relative order of execution of the independent
operationsx = 1 andg = g*2, By a process of elimination, we can reduce the number of distinct runs to just
two, for instance to:



2: x = 1; y = 1; g = g+2; g = g*2;
3: x = 1; y = 1; g = g*2; g = g+2;

All other runs can be obtained from these two by one or more permutations of adjacent independent opera-
tions. We have the following mutual dependencies:

g = g*2 andg = g+2 because they touch the same data object,
x = 1 andg = g+2 because they are both part of T1,
y = 1 andg = g*2 because they are both part of T2.

The following operations are mutually independent:

x = 1 andy = 1,
x = 1 andg = g*2,
y = 1 andg = g+2.

0,0,0

1,0,0

1,0,2

1,1,2

1,1,4

0,1,0

0,1,0

1,1,0

1,1,2

1,1,0

x = 1

g = g + 2

y = 1

g = g *2

y = 1

g = g *2

x = 1

g = g + 2

x = 1y = 1

g = g *2g = g + 2

Fig. 11 — Full and Reduced Depth-First Search forT1×T2.

Using this classification of dependent and independent operations, and transitions, we can partition the runs
of the system into two equivalence classes: {1,2,6} and {3,4,5}. Within each class, each run can be
obtained from the other runs by one or more permutations of adjacent independent transitions. The even-
tual outcome of a computation remains unchanged under such permutations. For verification it therefore
would suffice to consider just one run from each equivalence class.

For the system from Figure 11 it would suffice, for instance, to consider only runs 2 and 3. In effect this
restriction amounts to a reduction of the graph in Figure 11 to the portion spanned by thesolid arrows, and
including only the states indicated inbold. There are three states fewer in this graph and only half the num-
ber of transitions, yet it would suffice to accurately prove LTL formulae such as:

(g≡0 ∨ g > x),

◊ (g≥2 ),

(g≡0 ) U (x≡1 ),



3.4. Visibility

Would it be possible to formulate LTL properties that hold in the reduced graph, but that are violated in the
full graph? To answer this question, consider formula

(x≥y).

This formula indeed has this unfortunate property. So what is different? The formula secretly introduces a
dependence that was assumed not to exist: it relates the values of the data objectsx andy, while we earlier
used the assumption that operations on these two data objects were always independent. The dependence
of operations, therefore, does not just depend on automata structure and access to data, but also on the logi-
cal properties that we are interested in proving about a system. If we remove the pairx = 1 andy = 1 from
the set of mutually independent operations, the number of equivalence classes of runs that we can deduce
increases to four, and the reduced graph gains one extra state and two extra transitions. The new graph will
now correctly expose the last LTL formula as invalid.
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Fig. 12 — Effect of Partial Order Reduction.
Best Case Performance. Leader Election Protocol with N Processes.

The potential benefits of partial order reduction are illustrated in Figure 12. Shown is the reduction in the
number of states in the product graph that needs to be explored to perform model checking when partial
order reduction is either enabled (solid line) or disabled (dashed line). In this case, the improvement
increases exponentially with the problem size. It is not hard to construct cases where partial order reduction
cannot contribute any improvement (e.g., if all operations are dependent). The challenge in implementing
this strategy in a model checker is therefore to secure that in the worst case the graph construction will not
suffer any noticeable overhead. This was done in theSpin model checker with astatic reduction method.
In this case, the dependency relations are computed offline, before a model checking run is initiated, so that
no noticeable runtime overhead is incurred.

To formalize the many notions we have casually introduced above, we need to introduce the formal frame-
work of anextended finite automaton, which includes the definition of a context of data objects and an
interpretation of transition symbols within that context. We must also formalize the notion ofdependence
of operations,equivalence of runs, andequivalence robustness of properties. For detailed treatments of
these notions we refer to [Ma87, Kw89, P94]. A description of the implementation of partial order reduc-
tion techniques within the Spin model checker can be found in [HP94], with a small adjustment that is
explained in [HPY96]. A formal proof of correctness of the algorithm is given in [CP99].

3.5. Proof approximation

The first automated verification systems based in graph analysis were developed about twenty years ago
today. Since then, the computational complexity has been the single most dominant issue that is being
addressed in this field. We have better algorithms today, smarter tools, and significantly more powerful



machines, but the problems we attempt to solve have also grown in size. The problem of managing compu-
tational complexity is still the single most dominant issue in this field, and given the nature of the problem
we are attempting to solve, it is likely to remain that way.

With proper abstraction and modeling techniques, with reduction and minimization algorithms, and with
access to the largest computers impressive results have been achieved. Where twenty years ago it could be a
challenge to verify the toy alternating bit protocol, today we can verify complex software spanning several
thousands of lines of code. Yet, one does not have to look far to find examples of applications where the
computational resources that would be required to rigorously verify the simplest model of the smallest sep-
arable piece of the application still exceed practical constraints. The question is now what we can do in
these situations. We can blame the model builder, and wait for a better model. We can blame the machine,
and wait for more a powerful one. We can blame the verification tool, and wait for better algorithms. Or,
we can try to design a different type of search algorithm, that attempts to approximate the result of a verifi-
cation as closely as possible within the currently available constraints, whatever those constraints may be.
We will investigate such techniques here.

To begin, let us look at the memory requirements of model checking. The depth-first search algorithm, dis-
cussed in part II of these notes, constructs a set of states. Each state in the intersection of the property
automaton and the interleaving product of the component automata is stored in astatespace. Since the
model checking problem for all practical purposes is reduced to the solution of a reachability problem, all
the model checker does is to construct states and to check whether they were previously visited or new.
The performance of a model checker is determined by how fast we can do this.

The statespace structure serves to prevent the re-exploration of previously visited states during the search: it
turns what would otherwise be an exponential algorithm into a linear one, that visits every reachable state
in the graph at most once. To enable fast lookup of states, the states are normally stored in a hash-table, as
illustrated in Figure 13.

Linked List

hash(s)s

h − 1

0

Fig. 13 — Standard Hash Table Lookup.

Assume we have a hash-table withh slots. Each slot contains a list of zero or more states. To determine in
which list we store a new states, we compute a hash-valuehash(s), unique tos and randomly chosen in the
range 0..h-1. We check the states stored in the list in hash-table slothash(s) for a possible match withs. If
a match is found, the state was previously visited and need not be explored again. If no match is found,
states is added to the list, and the search continues.

Each state is represented in memory as a sequence of S bits. A simple (but poor) hashing method
would be to consider the array of bits as one large unsigned integer, and to calculate the remainder of
its division byh, with h a prime number. A more efficient method, used in the model checkerSpin,
is to use achecksum polynomial to compute the hash values. We now choseh as a power of 2 and use
the polynomial to compute a checksum oflog(h) bits. This checksum is then used as the hash value.

Let r be the number of states stored in the hash-table andh the number of slots in that table. Whenh >> r,
each state can be stored in a different slot, provided that the hash function is of sufficiently good quality.



The lists stored in each slot of the hash-table will either be empty or contain one single state. State storage
has only a constant overhead in this case, carrying virtually no time penalty.

When h < r, there will be cases for which the hash function computes the same hash value for different
states. Thesehash collisions are resolved by placing all states that hash to the same value in a linked list at
the corresponding slot in the hash-table. In this case we may have to do multiple state comparisons for
each new state that is checked against the hash-table: towards the end of the search on averager / h compar-
isons will be required per state. The overhead incurred increases linearly with growingr / h, once the num-
ber of stored statesr exceedsh.

Clearly, we would like to be in the situation whereh >> r. In this case, a hash-value uniquely identifies a
state, with low probability of collision. The only information that is contained in the hash-table is now pri-
marily whether or not the state that corresponds to the hash-value has been visited. This is one single bit of
information. A rash proposal is now to indeed store only this one bit of information, instead of theS bits of
the state itself. This leads to the following trade-offs.

Given m bits of memory to store the hash-table,S bits of data in each state descriptor,r reachable states,
and a hash-table withh slots. Clearly, fewer thanm / S states will fit in memory, since the hash-table itself
will also take some memory. Ifr > m / S the search will exhaust the available resources (and stop) after
exploring a fraction ofm /(r. S) of the statespace. Typical values for these parameters are:m = 109, S = 103,
andr = 107, which gives a ratiom /(r. S) = 10− 2, or a coverage of the problem size of only 1%.

If we configure the hash-table as an array of 8.m bits, using it as a hash-table withh = 8.m 1-bit slots, we
now haveh >> r, since 8. 109 >> 107, which should give us an expected coverage close to 100%. When,
with low probability, a hash-collision happens, our model checking algorithm will conclude incorrectly that
a state that was visited before, and it will skip it. It may now miss other states that can only be reached via
a path in the reachability graph that passes through this state. This, therefore, would lead to loss of cover-
age, but it cannot lead to false error reports. We will see below that in almost all cases where this method
would be used (i.e., when normal state storage is impossible due to limited resources available) coverage
will increase far more due to the increased capacity to store states than it is reduced due to hash collisions.

This storage discipline was referred to by former Bell Labs colleague Robert Morris in 1968 as follows:

‘‘A curious possible use of virtual scatter tables arises when a hash address can be computed with
more than about three times as many bits as are actually needed for a calculated address. The possi-
bility that two different keys have the same virtual hash address becomes so remote that the keys
might not need to be examined at all. If a new key has the same virtual hash address as an existing
entry, then the keys could be assumed to be the same. Then, of course, there is no longer any need to
keep the keys in the entry; unless they are needed for some other purpose, they can just be thrown
away. Typically, years could go by without encountering two keys in the same program with the
same virtual address. Of course, one would have to be quite certain that the hash addresses were uni-
formly spread over the available addresses.
No one, to the author’s knowledge, has ever implemented this idea, and if anyone has, he might well
not admit it.’’ [M68]

To reduce the probability of collision, we can use multiple independent hash-functions, and set more than
one bit per state. Using more bits can increase the precision but reduce the number of available slots in the
bit hash-table. The trade-offs are delicate and deserve a more careful study.

3.6. Bloom filters

The method we have described was first proposed for use in a verification tool in [H88]. It is closely
related to a method known as a Bloom Filter, described by Burton Bloom in 1970 [B70].

Let againm be the size of the hash-table in bits,r is the number of states stored, andk the number of hash-
functions used. (That is, we storek bits for each state stored, with each of thek bit-positions computed with
an independent hash-function that uses theS bits of the state descriptor as the key.)

Initially the hash-table will contain only zero bits. Whenr states have been stored, the probability that any
one specific bit is still 0 will be:
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which gives us an upper-bound for the probability of hash-collisions on the firstr states entered. (E.g., the
probability of a hash-collision is trivially 0 for the first state entered.) The probability of hash-collisions is
minimized for the value ofk = log( 2 ). m / r, which gives
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For m= 109 andr = 107 this gives us an upper-bound on the probability of collision in the order 10− 21, for
a value ofk = 89. 315.
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Fig. 14 — Optimal Number of Hash-Functions and Probability of Hash-Collision.



Figure 14 illustrates these dependencies.

In practicek must be an integer (e.g., 90). In a well-tuned model checker, the runtime requirements of the
search depend linearly onk: computing hash-values is the single most expensive operation that the model
checker must perform. The larger the value ofk, therefore, the longer the search for errors will take. In the
model checkerSpin, for instance, a run withk = 90 would take approximately 45 times longer than a run
with k = 2. Although time is a more flexible commodity than memory, the difference is significant. The
question is then how much quality we sacrifice if we select a smaller than optimal value ofk. The trade-off
is illustrated in Figure 14.

For the suboptimal valuek = 2, the value used in the model checkerSpin [H97], the upper-bound on the
collision probability becomes 4. 10− 4, which reduces the expected coverage of the search from 100% to
near 99%, still two orders of magnitude greater than realized by a hash-table lookup method for this case.
We can also see in Figure 14 that the hashing method starts getting very reliable form / r ratios over 100. To
be compatible with traditional storage methods, this means that for state descriptors of less than 100 bits
(about 12 bytes) this method is not competitive. In practice, state descriptors exceed this lower-bound by a
significant margin (one or two orders of magnitude).

An interesting variant of this strategy was proposed in [W93], and namedhash-compact. In this case we try
to increase the size ofm far beyond what would be available on a normal machine, e.g. to 264 bits. We now
compute a single hash-value within the range 0..(264-1), as a 64-bit number, and store this number in a reg-
ular hash-table, as shown in Figure 13, instead of states. We have k = 1 in this case, effectively
m= 264 ∼∼ 1019. For the value of r = 107 we then get a probability of collision near 10− 57, giving an
expected coverage of 100%. To store 107 64-bit numbers takes less thanm= 109 bits, so also this method
works. The maximum value of r for which we could get the superior performance of the hash-compact
method is of coursem / r.

Both the hash-compact method and double-bit hashing have been implemented inSpin [H97].) A measure-
ment of the performance of these two methods for a fixed problem sizer = 427 , 567 and the amount of
available memorymvarying from 0 tom> r. S is shown in Figure 15, which is taken from [H98].
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Fig. 15 — Measured Coverage of Hash-Compact (hc) and Double Bitstate
Hashing (k=2), for varying m, and fixed r=427567 states and S=1376 bits.

When sufficient memory is available, traditional state storage is preferred. Barring this, if sufficient mem-
ory is available for the hash-compact method, then this is the preferred method. Beyond that the double-bit
hashing method is superior. The latter method, for instance, still achieves a problem coverage of 50% when
only 0.1% of the memory resources required for a full traditional search are available.

The coverage of both the hash-compact and the double-bit hashing method can be increased further by per-
forming multiple searches, each time with an independent set of hash-functions [H98]. If each search



misses a fractionp of the state space,t independent searches could reduce this top t . Though expensive in
runtime, this gives us a capability to increase the quality of a verification under adverse constraints.

4. Model extraction

The most powerful tool we have in our arsenal for the verification of software applications is abstraction.
By capturing the essence of a design in a mathematical model, we can often demonstrate that the design
must have certain inevitable properties. The very purpose of a model is to enable proof. If it fails to do so,
with the tools that are available to the prover, the model should be considered inadequate.

We could stop here, and merely illustrate the point by presenting some examples of poorly constructed and
well-constructed models [H98b], sketching the types of abstraction techniques that are useful in building
verifiable models of software applications. There are some problems with this approach though. First,
finding the right abstraction can be hard. It takes time to develop the insight that is needed to capture the
essence of a software design at the proper level of abstraction. More often than not, one only realizes what
the proper level of abstraction was some time after a verification attempt is completed. Software projects,
especially in industry, face strict deadlines, leaving little room for reflection or detailed consultation with
software designers. A hurried, and inadequate choice of an abstraction can trigger long an frustrating bat-
tles with run-away complexity. Worse, the choice of an invalid abstraction can give a false sense of security
by causing the verifier to miss design errors alltogether.

An alternative method, that we shall explore here, is to use abstraction techniques in a systematic manner to
extract verification models mechanically from software artifacts (source code). As an example, we will
consider programs written in a relatively low-level imperative programming language such as C. The
model extraction process then proceeds in four steps: parsing, interpretation and abstraction, simplification,
and finally conversion into the format accepted by the model checker.

Parsing.
The program source text is converted into a finite automaton structure (also known as acontrol flow
graph, a parse tree or an abstract syntax tree). The states in the automaton are the control flow
points of the program, and the transitions are labeled with the declarations, conditions, and basic
statements from the program text. The finite automaton structure is constructed such that it preserves
all information necessary to reconstruct the original program source text, no more and no less.

Interpretation and Abstraction.
The program is now in a standard form where abstraction techniques can be applied, e.g.,
[AL91],[CGL94]. We can also apply program slicing techniques [T95],[CD00], with the slice crite-
ria derived from the program properties to be proven. Slicing algorithms allow us to construct the
smallest program fragment that preserves all access to all data objects mentioned in the properties,
and all entries to an exits from the corresponding program locations. We can also postpone slicing
until after a base model has been generated from the program source, and use model-based slicing
techniques, e.g., as supported in theSpin model checker (version 3.4.0 and later). We will discuss
these and other types of abstraction in more detail below.

Simplification.
Next, the abstracted program can be simplified and, optionally, optimized by using standard tech-
niques used in compiler construction. This includes rewriting, dead variable elimination, dead code
elimination, constant propagation, loop unfolding etc.

Conversion.
The final step is to translate the abstracted and simplified program model into the syntax of the model
checker used, and to write it out. This stage is similar to the final code-generation phase of a com-
piler, but since the target is high-level, rather than low-level code, the step is relatively straightfor-
ward here. We can benefit from the fact that the control flow of the application is usually trivial to
convert from one format into another, and simple abstraction techniques can be used to bridge any
syntactic gap between the source implementation language and the target modeling language.

The main types of abstraction can be used in the model extraction process are as follows.

Slicing [T95] can be used to reduce a program source to a smaller fragment, of lower complexity, that
contains only part of its functionality. The slice point can be given as a reference to a a specific set of



data objects, e.g. the data objects that are referred to in the property to be proven or in a particular
statement of interest. All code that is directly relevant to the manipulation of these data objects is pre-
served in the slice and the rest is hidden. Slicing algorithms are based on data and control depen-
dency analysis of the program text. The objective of the slicing algorithms is to identify those parts
of the program that are irrelevant with respect to the properties to be proven. Since all properties of
interest are necessarily preserved under this abstraction we can guarantee that if the original program
can violate a property of interest, then so can the sliced version and vice versa. Property-based slic-
ing has the desirable characteristics of being both sound and complete; it permits neither false nega-
tives nor false positives during the final verification. As we shall see, this is not necessarily true for
other abstraction and reduction techniques.

Predicate Abstraction [GS97], [DDP99] andMapping [CGL94], can be used to reduce the value
ranges of data objects, e.g., from integer to Boolean values. If, for instance, the correctness property
requires us to determine if a specific timer is running or not, but does not require knowledge of it’s
precise value, then we can map the integer data object that holds the timer value to a Boolean object,
with an appropriate mapping function. We can use the assistance of a theorem prover or of special-
ized decision procedures to prove that mappings are applied consistently, and together define a sound
abstraction. In general, this type of abstraction can guarantee that if the program allows a property
violation then so will the model, but not necessarily vice versa: it is sound (cannot produce false posi-
tives) but not necessarily complete (it may produce false negatives). A false negative is counter-
example that shows that a property can be violated in the abstract model, that cannot be reconstructed
for the concrete model. It means that information was lost in the abstract that turns out to be relevant
for distinguishing incorrect from correct runs. In most cases the counter-example contains sufficient
information to allow the user to remove the false negative by revising the abstraction that was
applied.

Generalization is a method by which we introduce non-determinism to remove irrelevant detail from
a model. The generalization is defined in such a way that the number of runs of the system of the
whole strictly increases. The system can still performall the executions that it could before the gen-
eralization was applied, but it now permits also additional executions. And execution that violates
the property must therefore still be present, so the method is sound. The added executions, however,
could themselves violate the property, and thereby introduce false negatives, so like predicate
abstraction, this method is not necessarily complete. An example of generalization is to replace a
process with a random demon that can generate all externally visible events that the original process
can generate non-deterministically. (E.g., to model a subscriber in a telephone system with a demon
that randomly generates on-hook, off-hook, and digit events.)

Restriction can be used to restrict the scope of the verification to a subset of the problem. We can for
instance restrict the capacity of buffers, the number of active processes, the dimensions of arrays, etc.
In general, there will be no guarantee that essential correctness properties are preserved under these
abstractions. In formal terms, this abstraction method is neither sound nor complete: it can introduce
both false negatives and false positives. Nonetheless, the method can be useful in an exploratory
phase of a verification effort, to study problem variants with possibly lower complexity than the full
problem that is to be solved.

We next discuss three main types of abstraction methods in more detail below: program and model slicing,
predicate abstraction, and tabled abstraction [HS99a],[HS99b].

5. Program and model slicing

As an example we will consider a simple wordcount program, written in Promela, the input language of the
Spin model checker. The program receives characters, encoded as integers, over the channelstdin , and
simply counts the number of newlines, characters, and white-space separated words, up to an end-of-file
marker which is encoded as the number-1 .

If we wish to verify that this program maintains the invariant(nc ≥ nl), then clearly all manipulation of
the variablesnw andinword are irrelevant. In a first step of a slicing algorithm, only the variablesnc and
nl are marked as relevant. These two variable become the slice criteria for deriving a reduced model that
will suffice to prove, or as we shall discover disprove, the property.



The slicing algorithm now performs a data-flow analysis, marking all statements where the relevant vari-
ables are either used (i.e., read) or defined (i.e., assigned a value). These statements appear on lines 11 and
12. Next, we perform a control-dependency analysis for each of the three currently marked statements.
The marked statements arecontrol-dependenton every statement in the model that can affect their execu-
tion (e.g., preventing it by blocking). For our wordcount program this applies to the conditionalsc ==

’\n’ on line 11, andc == -1 on line 10. Note, for instance, that if the latter condition evaluates totrue,
the relevant statements cannot be reached. These two conditionals are now marked as relevant.

1 chan  stdin = [1] of { int };
2 int  c, nl, nw, nc;
3 bool  inword = false;
4
5 active  proctype wordcount()
6 {  /*  count number of lines, words, and chars received */
7 do
8 ::  stdin?c ->
9 if
10 ::  c == -1 -> break  /*  end of input */
11 ::  c == ’\n’ -> nc++; nl++
12 ::  else -> nc++
13 fi;
14 if
15 ::  c == ’ ’ || c == ’\t’ || c == ’\n’ ->
16 inword  = false
17 ::  else ->
18 if
19 ::  !inword ->
20 nw++;  inword = true
21 ::  else /* do nothing */
22 fi
23 fi
24 od;
25 printf("%d\t%d\t%d\n",  nl, nw, nc)
26 }

The data-objects referred to in the newly marked statements become data-dependent on the property, and
we repeat the control dependency analysis. In the second phase we now discover the input statement on
line 8 as both data-dependent (it assigned a value to the data-dependent variablec) and control-dependent
(if it blocks, none of the other relevant statements can be reached). This marks the channelstdin as data
dependent. We continue this process of performing alternately a data dependency analysis and a control
dependency analysis until a fixedpoint is reached.

In the final slice, the program fragment on lines 14-23, and the one statement on line 25 is marked as irrele-
vant to the proof of the invariant property. Note for instance that even though the statements on line 15
refers to the relevant variablec , it cannot change the value of that variable, and therefore properly remains
outside the slice.

We can now perform model checking on the reduced model. Before we can do so, however, we must close
the model to its environment. That is, we must encapsulate inside the model all the essential assumptions
that have to be made about external processes that the process considered can interact with. These assump-
tions are essential for the proof to be performed. In the case of the wordcount program we must formalize
our assumptions about the external source of the characters that are being counted. Using a generalization
technique, we can think of a first approximation of an external process that sends randomly selected sym-
bols from the ASCII character set, plus the specially designated end-of-input marker.

We can do better though, by applying another simple form of abstraction. If we collect all the uses of the
input variablec in the (remaining) text of the wordcount program we see that only three ranges of values of
the variable are of interest: (1) newlines, (2) end-of-input markers, and (3) any other symbol. It suffices
therefore to restrict the input stream to just three abstract symbols, representing the three relevant value
ranges. The following environment definition suffices for the sliced model.



#define newline  ’\n’
#define eof  -1
#define anythingelse  0

active proctype input()
{

do
:: stdin!newline
:: stdin!eof
:: stdin!anythingelse
od

}

Note that for the non-sliced program, we would have had to add two extra symbols, for space and tab, to
capture the close the system to its environment. We can now combine this with the sliced model derived
before, to complete the verification model.

chan stdin = [1] of { int };
int c, nl, nc;

active proctype wordcount()
/* sound and complete slice for (nc ≥ nl) */

{
do
:: stdin?c ->

if
:: c == eof -> break
:: c == newline -> nc++; nl++
:: else -> nc++
fi

od
}

If we perform the verification of the invariant (nc ≥ nl), we discover that this property can be violated.
Because we have only performed sound and complete abstractions, this is necessarily a valid counter-
example and cannot be a false negative.

The counter-example shows that when the value of variablec wraps around its maximal value (exceeding
the range ofint ) it can become smaller than the value ofnl : an obvious consequence of the fact that all
value ranges are necessarily finite. It is not a problem we are likely to run into in practice, except for
exceedingly large inputs.

5.1. Slicing algorithm

We will describe the core of the slicing algorithm that is included in theSpin model checker. For model
checking applications the slicing algorithm has to be slightly different from the traditional methods, as for
instance described in [T95]. We cannot, for instance, safely remove a cyclic component from the control-
flow graph, even if each individual statement in such a cycle is independent of the property to be proven.
Removal of such a cyclic component would require a proof of termination, which in general cannot be done
by static analysis. Observe that absence of termination would affect the liveness properties of a program.
Our approach to slicing, therefore, proceeds in three phases. In the first phase, we identify all statements
that are relevant to the property to be proven. In the second phase, all non-relevant statements are replaced
by the null-statementskip, but the structure of the control-flow graph is not modified.

Only in the last phase of the slicing algorithm do we simplify the control-flow graph, while taking care to
preserve all liveness properties. A non-cyclic subgraph in the control-flow graph consisting only ofskip
statements, for instance, can be collapsed down to a single statement, as illustrated in Figure 16. Note that
cycles are preserved under this transformation.

We will now look at the slicing algorithm that was implemented inSpin Version 3.4.0 in more detail. The
input language forSpin defines three basic types of objects: processes, local and global variables, and mes-
sage channels. Processes can interact via synchronous or asynchronous message passing, or via unre-
stricted access to global variables. In particular, there are no pointers or recursive functions inSpin
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Fig. 16 — Simplification of the Control-Flow Graph After Slicing.

verification models: the two features that can complicate the design of a slicing algorithm for a general pur-
pose programming language. Assume the following input to the slicing algorithm.

S is the set of all basic statements in the program (like assignments, conditions, send operations,
receive operations, process instantiations, etc.). The set of basic statements is identical to the set of
labels on the transitions in the control-flow graph of the program considered.

B is the subset of S that contains all basic statements that can block, that is all those statements of
which the execution is conditional on the system state. The execution of an assignment statement,
for instance, is always unconditional. The execution of a receive operation on message channelm
is conditional on the non-emptyness ofm.

T(s,t)or as we shall writes ∼> t, is a function on the elements ofS that returns true if and only if state-
mentt is reachable from statements within the control flow graph of the program. Ifs andt are
statements from different processes, thens ∼> t will always be false.

D is the set of all local and global data objects in the program.

C is a subset ofD that contains all pending slice criteria. The initial contents ofC is derived from the
program properties that are to be proven: each data object that is referred to in at least one property
becomes a slice criterion.

P is a subset ofD that contains all processed slice criteria. This set is initially empty.

Def ( s )with s∈S. Def ( s ) contains all those elements ofD that aredefined(i.e., can be assigned a new
value) in statements.

Use ( s )with s∈S. Use ( s ) contains all those elements ofD that areused(i.e., evaluated) in statements.

The objective of the slicing algorithm is to compute a setR, which is the subset ofS that contains all state-
ments inS that are relevant with respect to the initial set of slice criteria, and hence relevant to the verifica-
tion of the property. All  statements inS\R can be replaced by a null operationskip in the model without
altering the outcome of a verification attempt in any way.

In the description of the algorithm below we will use the following three operations on sets.

Empty(x)is a boolean function that returns trueif setx is empty, and otherwise false.

Get(x) removes an element from setx and returns it as the result of the operation. And finally,

Put(y,x)adds elementx into the sety.

Initially, setP is empty. The algorithm computes the set of statements that must be contained in the slice in
setR.



while (!Empty(C))
{

d = Get(C);  #  start processing slice criterion d
Put(P, d);  #  mark it as processed

X = { s | s ∈ S ∧ d ∈ Def(s) }
R = R ∪ X #  add data dependent statements

U = { u | ∃ s, s ∈ X ∧ u ∈ Use(s) ∧ u /∈ (P ∪ C) }
C = C ∪ U #  add new slice criteria

Z =  { s | s ∈ B ∧ ∃ t, t ∈ X ∧ s ∼> t }
W = { u | ∃ s, s ∈ Z ∧ u ∈ Use(s) }
C = C ∪ W # add control-dependencies

}

Termination: The algorithm presented above will terminate. First observe that forSpin models input setD
is guaranteed to be finite. In each cycle of the algorithm precisely one element from setC moves to setP,
and only elements from setD that are not already contained in eitherC or P can be added as new elements
to C. In maximallyD iterations of the algorithm, then, all elements ofD will be present inP and no fur-
ther elements can be added toC. SinceC shrinks by one element in each iteration, setC will reduce to
empty within a finite number of iterations, at which point the algorithm terminates.

There are two special cases that must be dealt when the algorithm is implemented, e.g., as it is in Spin Ver-
sion 3.4.0. The first is that without precautions the control-dependency analysis would be too strict. For
the computation of setZ we can exclude statements from consideration if those statements are part ofbub-
ble in the control-flow graph. A bubbleis a subgraph of the control-flow graph that satisfies the following
three conditions.

• The subgraph has one unique entry pointe and one unique exit pointx , both elements of setS: no
statement inside the subgraph can be reached other than by passing throughe, and no statement out-
side the subgraph can be reached other than by passing throughx .

• All decisionsin the subgraph are non-blocking. This means that either all statements in the subgraph
are either non-blocking, or the immediately preceding statements in the control-flow graph also have
else as one of their successors.

• The subgraph contains no single statement that is currently contained in setR.

The subgraph defined by the program fragment from lines 14-23 in the wordcount example at the start of
this section satisfies these three conditions, and therefore need not add any control dependencies.

Bubblesubgraphs can be found by computing the dominators for each node in the control-flow graph, cf.
[ASU86]. The dominators are computed twice: once for the control-flow graph as given and once for the
same graph with the direction of all edges reversed.

The second special case has to do with the use of channels inSpin models. The question has to do with the
initial computation of the setsDef ( s ) andUse ( s ) for each statement inS. Consider the simple send
and receive statements:

s1: q1!w
s2: q2?v

Statements 1 sends the value of variablewover channelq 1 , and statements 2 receives a value from chan-
nelq 2 and assigns it to variablev . We must have

Def(s1) = { }
Use(s1) = { w, q1 }
Def(s2) = { v }
Use(s2) = { ?, q2 }

What should be the missing entry inUse ( s 2 ) ? Clearly, the value assigned to the variablev came from
somewhere. Ifq 2 andq 1 refer to the same channel object, then we can fill in:



Use(s2) = { w, q2 }

In Spin models there are only three ways in which a channel name can be aliased: by assignment, by mes-
sage passing (channels can be passed as parameters through channels), and by process instantiation (by
passing a channel object as a parameter to the newly created process).

This means that it is relatively straightforward to perform a channel alias analysis that associates with each
channel object all instantiated channels that the object could point to. To determine, then, which data
objects must be entered into the definition ofUse ( s 2 ), we inspect the alias list ofq 2, and locate all
statements in the model that can perform send operations on the channels that appear in this list. All  vari-
ables used as parameters in these send operations, that appear in theirUse definitions, are now added to
Use ( s 2 ). For the example, with q 1 andq 2 pointing to the same channel, this identifiesw as the miss-
ing element, as intended.

6. Predicate abstraction

Another well-understood abstraction technique is predicate abstraction [GS97],[DDP99]. If, for instance, in
the property we are interested in the sign of a data object, but not in it’s absolute value, we can replace
every occurrence of this data object with a new variable that captures only its sign, but not its value. For
example, if the property is:

( ( x< 0 )→ ◊( x≥0 ) )

and the program contains statements such as

x = 0;
x++;

and conditional such as

(x > 5)
!(x > 5)

we can replace all occurrences of the variablex with a new boolean variableneg_x. The property is rewrit-
ten as:

( ( neg_x ) → ◊(¬neg_x ) )

the assignments and conditions are now mapped as shown in Table 1, usingND(a,b) to indicate a non-
deterministic choice ofa or b.

Table 1 — Predicate Abstraction.
_ ______________________________________________
Concrete Abstract_ ______________________________________________

neg_x ¬ neg_x_ _______________________________________________ ______________________________________________
x = 0; neg_x = false; skip;
x++; neg_x = ND(true, false); skip;_ ______________________________________________
(x > 5) false ND(true, false);_ ______________________________________________ 














Under the abstraction, precise information about the value of variablex is replaced with non-deterministic
guesses about the possible new values of the booleanneg_x. For instance, whenneg_x is currentlytrue,
and the value ofx is incremented, the new value ofx could be either positive or remain negative. This is
reflected in a non-deterministic choice in the assignment of eithertrue or false to neg_x. If, however,x is
known to be non-negative, it will remain so after the increment, and the value ofneg_x remainsfalse in this
case.

Given a data object with domain V. CallM the function that maps values from the concrete domain V to an
abstract domain A, i.e.,∀v∈V , M( v )⊆A. A requirement on the validity of the abstraction is that we can
define a reverse function R that lifts abstract values back into the concrete domain, in such a way that
[CW00],[CC76],[DGG97]:



∀v∈V , v⊆R(M( v ) ) ∧ ∀m∈A , m≡M(R( m ) )

i.e., such thatM andA form a Galois connection. The relations are illustrated in Figure 17.

•

V A
R(M(v))

M(v)

V A

•

R(m)

M(R(m))

Fig. 17 — Abstraction and Concretization.

These relations hold for the sample abstraction mapping from the integer variablex to the boolean variable
neg_x. Note thatR(M( v ) ) is a set. Depending on the original value of v, this set includes either all values
v≥0 or all values v< 0, as intended.

Predicate abstractions can in some cases be computed mechanically for restricted types of statements and
conditions, e.g., when we restrict to Pressburger arithmetic. In this case, one can use a mechanized decision
procedure for the necessary computations, e.g. the Stanford Validity Checker SVC [L98]. In general, espe-
cially for applications written in unrestricted C, a manual process to define the abstractions seems unavoid-
able. This leads to the next method, calledtabled abstraction.

6.1. Tabled abstraction

Once a program is parsed, all control-flow constructs have been interpreted and what remains are only the
basic statements and conditions from the source language. We can sort this list, remove duplicates, and
place the entries into a table. For each entry into the table we can now define an translation from the source
language to the target modeling language. The translation allows us to specify simple syntactical conver-
sions but also higher-level abstractions. The table can be filled in to a large extent with automated tech-
niques, e.g. slicing and predicate abstractions based on the property to be proven. It seems unavoidable,
though, that some of the abstractions that are currently beyond the reach of automated techniques have to be
provided manually.

This tabled abstraction method has the advantage that it is intuitive, and imposes minimal overhead on the
verifier (both the human and the mechanized versions). It allows us to applyall abstraction techniques in
our toolset, including manually chosen generalization and restriction techniques. It is relatively easy to
keep an abstraction table up to date, as the source program that is the subject of verification evolves. A
model extractor can track the evolving source mostly automatically, alerting the user only to changes that
cannot be handled mechanically (e.g., extensions of functionality in the source).

6.2. Abstraction rules

Each entry into the abstraction table contains a left-hand side entry with a canonicalized representation of a
basic statement or conditional expression from the source text of the application, and a right-hand side that
specifies its desired interpretation in the abstract model. In many cases, a pre-defined interpretation, or
mapping, can be applied by the model extractor. Simple predefined types of rules for either hiding or liter-
ally preserving specific types of statements from the program source are listed in Table 2.

Table 2 — Predefined Mappings.
_ _________________________________________________________________ ________________________________________________________________
Type Meaning_ ________________________________________________________________
print Embed source statement into a print action in the model
comment Include in the model as a comment only
hide Do not represent in the model
keep Preserve in the model, subject to global Substitute rules_ ________________________________________________________________



A mapping toprint, for instance, signifies that we can abstract from the source statement, but that we still
are interested in seeing a witness of its appearance in the run of a model (e.g., in simulation runs or when
reproducing error trails). A mapping tocomment preserves the source text of the statement as a comment
in the model, but without any semantics. A mapping tohide strips the statement completely from the
model.

An example of an abstraction table with three of these mapping rules, plus two globalSubstitute rules, is
shown as Table 3.

Table 3 — A Sample Abstraction Table.
_ ________________________________
Substitute FALSE false
Substitute BOOL bit

D: int pData=GetDataPointer(); hide
D: BOOL m_bConnected keep
A: *((int *)pData)=(int)nStatus print
A: m_bConnected=FALSE keep_ ________________________________ 









Declarations from the source text are prefixed (by the model extractor) with a designation "D:" and assign-
ments are prefixed with "A:". Assume that it can be determined that the use of variablepData is irrelevant
to the property to be proven. We suppress the variable declaration in the verification model with a mapping
to hide, but can nonetheless preserve visibility of access to the variable by mapping all assignments to
print. Theprint mapping means that whenever this statement is encountered the verification model will not
execute but print the source text of the statement.

If a particular statement does not appear in the abstraction table the model extractor applies a default map-
ping rule, which can be chosen by the user. For assignments, the default rule could beprint, and in that
case the above entry can be omitted from the abstraction table. The user can specify a default mapping for
each basic type of statement (e.g., declarations, assignments, function calls, conditions).

All branch conditions, e.g. those used in iteration and selection statements to effect control flow, are entered
twice into the abstraction table by the model extractor: once in the form found in the source text, and once
in negated form. The reason for this apparent redundancy is that in the abstract model we have the option
of mappingboth versions totrue, and thus introduce non-determinism. Consider, for instance, the follow-
ing case:

C: (device_busy(x->line)) true
C: !(device_busy(x->line)) true

The precise determination if a given device is idle or busy is considered to be beyond the scope of the veri-
fication here. For verification purposes it suffices to state that both cases can occur, and the results of the
verification should hold no matter what the outcome of the call is. In a similar vain, though, we can use a
mapping tofalse as a constraint, to restrict the verification attempt to just one case:

F: (device_busy(x->line)) true
F: !(device_busy(x->line)) false

Here the verification would check correct operation of the system when the device polled is always busy.

6.3. Explicit mapping

In some cases, the predefined interpretations from Table 2 are not adequate to cover the specifics of a veri-
fication. For the applications of model extraction that we have considered so far, this applied to fewer than
20% of the entries in an abstraction table. The following example illustrates a typical use.

F: m_pMon->SendEvent(dest_Id,etype) destq!etype

Here the sending of a message is preserved in the verification model, much like akeep, after by casting it
into a specific, standardized, format. Note that within a programming language the send statement can take



any form whatsoever, since there is no generally accepted standard library for such operations. The
abstraction table here serves to standardize the format for these types of statements, without impeding the
freedom of the programmer to chose an arbitrary representation.

How a particular program statement should be abstracted in the model can also depend on the data objects
that are used in that statement. The tabled abstraction method allows us to identify the data objects that
should be considered relevant to the verification and those that can be elided without harm. A statement
that refers to an irrelevant data object will then be hidden from the verification model.

If no explicit mapping is defined and no data restrictions apply, then the model extractor will apply a set of
default type rules to define the conversion from program to model. Each source fragment is classified as
one of four types: an assignment (A), a condition (C), a declaration (D), or a function call (F). For each of
these types the model extractor has a default abstraction rule, based on the entries from Table 2.

6.4. Abbreviations

The abstraction table is generally much smaller than the program text from which it is derived. The user can
shorten it still further by exploiting some features of the model extractor. First, any entry that maintains it’s
default mapping can be omitted from a user-maintained table: the model extractor can fill in these missing
entries as needed. Second, the user can use patterns to assign the same mapping to larger groups of entries
that match the patter. For instance, suppose that all calls of the C library-functionsmemcpy andstrcpy
are to be hidden. We can avoid having to list all different calls by using ellipses, as follows:

F: memcpy(... hide
F: strcpy(... hide

This method could be expanded into a more general pattern matching method based on regular expressions.
The above prefix match, however, suffices to cover most cases encountered in practice.

The second method for introducing abbreviations uses theSubstitute rule that was shown earlier. Substi-
tute rules take effect only on mappings of typekeep, and they are applied in the order in which they are
defined in the abstraction table.

6.5. Example

The tabled abstraction method was first described in [HS99a], [HS99b] and used at Bell Labs to prove the
correctness of the call processing software for a new commercial switching system. We’ll  illustrate the use
of the tabled abstraction method here with a much smaller example: an implementation in ANSI-C [KR88]
of the well-known alternating bit protocol from [BSW69]. The source text for this program is shown
below.

#include <stdio.h>

/*
* C version of alternating bit protocol
*/

typedef char uchar;

typedef struct Buffer {
int size; /* current size of buffer */
uchar *cont; /* buffer contents */

} Buffer;

extern int get_data(Buffer *);
extern int put_data(Buffer *);



int
abp_sender(int N)
{ Buffer  Bufinp,  Bufout;

short s,  S=0, cnt=0;

Bufout.size = 1;
Bufout.cont = "M";
while (get_data(&Bufout))
{ cnt++;

send(&Bufout, S);
if (!recv(&Bufinp, &s))

break;
if (s == S)

S = 1 - S;
}
return cnt;

}

int
abp_receiver(void)
{ Buffer  Bufinp,  Bufout;

short s,  E=0, cnt=0;

Bufout.size = 1;
Bufout.cont = "A";
while (recv(&Bufinp, &s))
{ cnt++;

send(&Bufout, s);
if (s == E)
{ E  = 1 - E;

if (!put_data(&Bufinp))
break;

} }
return cnt;

}

The program defines the behavior of the sender and the receiver in the protocol. To run it, one can instanti-
ate two independent processes (asynchronous threads of execution): one process to execute the sender’s
code and one process to execute the receiver’s code. Two external routines are assumed to be available in
the execution environment. The functionget_data() is used at the sender side to obtain data to be trans-
mitted, and the function put_data() is used to deliver data to its ultimate destination at the receiver.
The details of the code are of less interest here than the process of converting it into an abstract model,
guided by a user defined abstraction table.

Using the program as input, we can extract a verification model inSpin’s input language (Promela) with a
model extraction tool. The tool we use is the Bell Labs Automata Extractor for C code calledAX. The tool
can generate a default abstraction table, that can be based on slicing and predicate abstraction techniques.
The abstraction is conservative in the sense that language constructs that cannot be handled are generalized.
For instance conditional tests on data objects that cannot be represented in the specification language of the
model checker (e.g., pointers) are non-deterministically mapped to the valuestrue andfalse. The table can
be adjusted manually for more targeted model extraction.

The two parts of the model of the alternating bit protocol, one part for the sender and one part for the
receiver, are extracted separately as follows.

$ ax -a abp_receiver abp.c
$ ax -a abp_sender  abp.c

The two parts of the model are extracted into the filesabp_receiver.spn andabp_sender.spn ,
and the two default abstraction tables are written into the filesabp_receiver.lut and
abp_sender.lut . The tables we will use are shown in Figures 18 and 19.
The model extractor classifies statements as a declaration (prefix "D:"), a condition (prefix "C:"), an assign-
ment (prefix "A:"), a function call (prefix "F:"), a return statement (prefix "R:"), or an expression (prefix



D: Buffer Bufinp,Bufout;  keep  /*  literal */
D: short s,E=0,cnt=0;  keep
A: Bufout.size=1  keep
A: Bufout.cont="A"  keep
C: (s==E)  keep
C: !(s==E)  keep
A: E=(1-E)  keep
E: cnt++  keep

F: send(&(Bufout),s)  sq!Bufout,s /*  syntax conversion */
C: recv(&(Bufinp),&(s))  rq?Bufinp,s  /*  syntax conversion */
C: !recv(&(Bufinp),&(s))  timeout  /*  restriction */

C: (!put_data(&(Bufinp)))  false  /*  restriction */
C: (put_data(&(Bufinp)))  print  /*  slicing */
R: return cnt  hide /*  slicing */

Fig. 18 — Abstraction Rules for Receiver.

D: Buffer Bufinp,Bufout;  keep  /*  literal */
D: short s,S=0,cnt=0;  keep
C: (s==S)  keep
C: !(s==S)  keep
A: S=(1-S)  keep
E: cnt++  keep

F: send(&(Bufout),S)  rq!Bufout,S /*  syntax conversion */
F: recv(&(Bufinp),&(s))  sq?Bufinp,s  /*  syntax conversion */
F: !recv(&(Bufinp),&(s))  timeout  /*  restriction */

C: (!get_data(&(Bufout)))  false  /*  restriction */
C: (get_data(&(Bufout)))  print  /*  slicing */
R: return cnt  hide /*  slicing */

Fig. 19 — Abstraction Rules for Sender.

"E:").

The main restriction we have defined for this verification attempt is the assumption that theput_data
and get_data functions do not fail. We can abstract from the effect of these functions for almost all
properties of interest of this protocol (the working of the protocol depends only on the sequence numbers,
but not on the actual data that is being transferred). Because theget_data is assumed to always succeed,
we restrict to the case where there is an infinite stream of messages from sender to receiver, tempered only
by the flow of acknowledgements in the opposite direction. Therecv() statements, therefore, also cannot
fail. We have mapped these totimeout , but under the given assumptions they could of course also have
been mapped tofalse.

The model extraction based on these tables produces the following result. The two parts of the abstract
Spin model shown in Figure 20 and 21 are generated by the model extractor. Once a property is added to
this model, slicing techniques could eliminate still more statements, e.g., the manipulation of thecnt vari-
ables in sender and receiver, and the access to theBufout data structure in the receiver. The model is
fairly close to the one that one would construct manually based on the description in [BSW69].
If the source program is revised for any reason, we can reuse the abstraction tables from above to re-extract
a model from the modified code. If new statements were introduced, the model extractor will add default
entries for them in the abstraction table and warn the user about their presence, so that they can be adjusted
to conform to the abstraction focus that was chosen. If statements were omitted, the model extractor will
comment them out of the abstraction table. For even significant revisions of the source, taking days for a
programmer to make, an update of the abstraction table to match it to the new version of the code typically
takes no more than a few minutes. The alternative of rebuilding a complete verification model for each
new version of the source program by hand would more likely approach the investment of time that the pro-
grammer made.



active proctype abp_receiver()
{ Buffer  Bufinp,Bufout;

short s, E=0, cnt=0;

Bufout.size = 1
Bufout.cont = A;

do
:: rq?Bufinp,s ->

cnt++;
sq!Bufout,s;
if
:: (s==E) ->

E = (1-E);
printf("C: !(!put_data(&(Bufinp)))0)

:: !(s==E)
fi

:: timeout -> break
od

}

Fig. 20 — Abstract Model for the Receiver.

active proctype abp_sender()
{ Buffer  Bufinp, Bufout;

short s, S=0, cnt=0;

do
:: printf("C:  !(!get_data(&(Bufout)))0);

cnt++;
rq!Bufout,S;
if
:: sq?Bufinp,s
:: timeout -> break
fi;
if
:: s==S -> S=(1-S)
:: else
fi

od
}

Fig. 21 — Abstract Model for the Sender.

We can inspect the behavior of the abstracted implementation with Spin. First we join the two parts of the
model in a simple Promela wrapper that defines minimal context for the two processes. The wrapper below
defines two abstract channels via which the processes can exchange their messages, and includes the text of
the two processes. The text of this wrapper, stored in a file called abp , is shown in Figure 22.

mtype = { A, M }; /* acknowledgements and data messages */

typedef Buffer {
int size;  /*  size of buffer */
mtype data;  /*  abstracted buffer contents */

};

chan rq = [2] of { Buffer, bit };  /*  data and sequence number */
chan sq = [2] of { Buffer, bit };

#include "abp_receiver.spn"
#include "abp_sender.spn"

Fig. 22 — Context Definition for Alternating Bit Protocol.

Now we can run Spin on this model. First, we can look at the first 20 steps in a simulation run, looking



only at message exchanges:

$ spin -c abp | sed 20q
proc 0 = abp_receiver
proc 1 = abp_sender

C: !(!get_data(&(Bufout)))
q\p 0 1

1 . rq!0
1 rq?0
2 sq!0
2 . sq?0

C: !(!put_data(&(Bufinp)))
C: !(!get_data(&(Bufout)))

1 . rq!1
1 rq?1
2 sq!1
2 . sq?1

C: !(!put_data(&(Bufinp)))
C: !(!get_data(&(Bufout)))

1 . rq!0
1 rq?0
2 sq!0

C: !(!put_data(&(Bufinp)))

This shows the two processes exchanging the sequence numbers and correctly retrieving and depositing
data during the run. A verification run can be more illuminating, checking the system for possible dead-
locks, and answering any other logical query that the user can formulate about the operation of the system.

$ spin -a abp
$ cc -o pan pan.c
$ pan
(Spin Version 3.4.0 -- 15 August 2000)

+ Partial Order Reduction

Full statespace search for:
never-claim -  (none specified)
assertion violations  +
acceptance cycles  -  (not selected)
invalid endstates +

State-vector 36 byte, depth reached 13, errors: 0
14 states, stored

2 states, matched
16 transitions (= stored+matched)

0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

1.493 memory  usage (Mbyte)

unreached in proctype abp_receiver
(0 of 12 states)

unreached in proctype abp_sender
(0 of 12 states)

The verification run confirms two simple default properties of thisimplementation of the alternating bit
protocol, under the stated restrictions: absence of deadlock and absence of unreachable code. Does this
prove the protocol correct? No it does not. To prove that the implemented version transfers messages
without loss and without reordering requires us to state and prove these more specific properties. Suffice it
to note here that the implemented version of the protocol discussed her deviates in a subtle way from the
original proposed in [BSW69], and does not have any of these desirable properties.



6.6. Industrial application

Automated model extraction from source code based on slicing, predicate abstraction, and the tabled
abstraction method were applied successfully in at least one significant industrial project to date: the design
of the call processing software for a new telephone switching system at Lucent Technologies. A detailed
description of this project can be found in [HS00].

7. In conclusion

The techniques that are used in practice today to secure the quality of software were developed in the late
sixties and early seventies and have changed little since then. This is a rather remarkable phenomenon.
Within the same period software applications have changed significantly in size and complexity. The larg-
est applications of the early seventies would be considered relatively small if produced today. For example,
an early version of Unix® from 1973 counted just 6,600 lines of C. Today even a wordprocessing applica-
tion is orders of magnitude larger, and, for that matter, the source code for the model checkerSpin is about
three times larger too. Similarly, in the early seventies most applications executed standalone and sequen-
tially, while most applications today execute in a distributed environment. To test them fully one would
need to consider sets of related and possibly interacting threads of execution.

Despite all these changes, and despite valid critique about the fundamental flaws of the traditional approach
to testing, these methods are relatively effective. The best testament of this is that even though almost all
computer controlled devices and services of today were checked with only these techniques, overall they do
work as advertised. The phone system, for instance, is designed with these techniques to meet exceptionally
stringent reliability requirements (less than 3 minutes downtime per year per switch).

On the other hand, there is also a slowly growing number of examples of spectacular failures of software
controlled systems. The examples are known well enough that we need not to repeat them here. (And the
odds are that better examples will occur between the writing of these notes and the time that you read
them.)

The reality of industrial software development is that today it is not economically feasible to develop fault-
free products. Software testing continues only until therate of discoveryfor new software defects drops
below a preset level. At this point, continuing testing becomes increasingly ineffective. The effect is illus-
trated in Figure 23.

Testing Stops

Cumulative
Number of
Bugs found

Time

Fig. 23 — The S-Curve of Test Effectiveness.

After an initial startup period, where relatively few bugs are found, the testing process starts uncovering
errors at a rate that is proportional to the number of tests performed. At some point the rate at which new
problems are discovered drops. The most likely bugs that are within the range of the tests have now been
found. Even if the amount of time spent on testing would be doubled, the number of problems found would
increase only marginally. Hence, it is no longer cost-effective to continue this process. The bugs with a
lower probability of occurrence, in the given test suite at least, will remain either dormant or they will be
repaired only when a customer steps on one and reports the problem. We can expressrisk as the product of
the probability of occurrence of an error and the damage that can be caused by that occurrence. Clearly, not
all undiscovered software defects carry the same level of risk. Figure 24 illustrates this.

Traditional testing techniques cover areas 1 and 3 in Figure 24 well: they find the most likely errors in a



software application. Discovering the errors in areas 3 and 4 is critically important to software quality,
while errors in areas 1 and 2 are of little practical interest. Areas 1 and 3 are important for the first impres-
sion of quality by the users of a software product. The errors in area 4, however, contribute to the infrequent
and sometimes spectacular failures. When software is used infrequently, by a small group of users, the
likelihood of these types of errors occurring remains small. The probability goes up, though, for successful
products that are used frequently by large numbers of users, which is a relatively recent phenomenon. Tra-
ditional testing techniques cannot hope to reach these types of error. But they can reliably be found with
formal software verification techniques of the type we have described in Part IV of these notes. Model
checkers such asSpin do not distinguish between likely and unlikely scenarios, they consider allpossible
scenarios. Thus, they perhaps are still over-qualified for the job. This could be addressed by developing a
new class of reduction techniques that can focus the attention of the model checker exclusively on area 4 in
Figure 24, considering that the other areas are either uninteresting or are already sufficiently covered by tra-
ditional techniques.

Fig. 24 — Risk and Damage.

Changing paradigms

It is perhaps interesting to note that the method we have outlined in these notes, based on the mechanical
extraction of automata models from software implementations, is the reverse of the theoretically more
attractive method of top-down stepwise refinement of code, proceeding from an abstract model towards a
concrete implementation. The latter technique, based on prevention rather than detection, is easier to jus-
tify, but has clearly resisted practical adoption so far. The method outlined here proposes a more distant
approach that imposes no new constraints on the software development process, but merely enables the
designer to detect efficiently when design objectives are jeopardized.
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