Software Model Checking

Gerard J. HOLZMANN
Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In thes notes we will review the automata-theoretidfication method and propo-
sitional linear temporal logic, with specific emphasis on their potesiglication to dis-
tributed software verification.

An important issue in software verificatide the establishment of a formal relation
between the concrete, implementation-level, softwapplication and the abstract,
derived, automata-model that is the subje¢hefactual verificationIn principle one can

either attempto derive an implementation from a verified abstract model, using refine-
ment techniques, or one can attempt to degiverification model from an implementa-

tion, using systematic abstraction techniqu&he former method has long been advo-
cated, but has not received much attention in industrial practice.

The latter method, deriving abstract models from condrefdementations guided by
explicitly stated correctness requirements, has recently begun to show considerable prom-
ise. Wewill discuss it in detail.

1. Introduction

Programming is a human activity. Because even the most conscientious human can occasionally make mis-
takes, a professional software design process will normally include a careful system of checks and balances
that aims to intercept as many of the mistakes as posbifiere a product ships to customeltsis our

premise that the fraction of mistakes intercepted lvarincreased, specifically for distributed systems
designs, if we complement traditional testing techniques with software model checking techniques.

Not all mistakes are equally easy to detect. Errors of syar@veasier to find than semantic errors, and
errors in sequentially executing, deterministic programs are easfgrdt¢than errors in multi-threaded,
non-deterministic systemaNe focus here on the problem of detecting errors in distributed systems code:
network applications, data communications protoawmiglti-threaded code, client-server applications, and

the like. We are particularly interested in algorithmic technigues that can be harnessed into tools, and that
can be integrated seamlessly into the software design cycle.

The goal of this introductiois to give a bird’s eye view of the field and place the main issues in software
model checking in contextWe provide a brief introduction to the automata-theoretiecking process,
discuss the use of logic for the specification of program propeftiethe remainder of the notege will

also discuss formal program abstraction techniques, and a methodology for extracting verification models
directly from program source code.

Feasibility

First aword about the relevance of software model checking techniques in industrial practice. Formally, the
problem we are tryingp solve can be shown to be PSPACE hard, e.g., [BZ83],[CM&ljractical terms

this means that there @sserious problem in handling large problem siZdserewill always be such prob-

lems, no matter how powerful machines become, so there is a need for algorithras $ele graciously

from exactto approximate solutions for growing problem sizés we shall see, such algorithms have
been developed.

Can formal verification techniques handle the type of problem sizes that occur in practice Theqg?-
ception of most practitioners that formal verification techniques are perhaps applicable to small exam-
ples, but not to any problem of real significance. This perception was formed and validated wiedd the
was in its infancyjn the mid seventies, but is rarely re-examin&thcewe have data on the relative per-
formance of our verification tools for the last two decades, it can be interestingitahgeperception still
holds true today.

In 1980we used a basic reachability analyzer, cailad, to verify properties of a model of an experimen-
tal telephone switch developed at Bell Labs [H8The switch, and the model, waslledTpc, short for
The phone company. Throughthe use ofPan a number of design problems were uncovered inTihe
software. A fully exhaustive verification was infeasible then; the complexitghef problem vastly
exceeded the constraints of the best machines available at that time.

We can recognize two major trends that have affected the feasibility of the formal verification of problems
such as these in the last two decadHse first is aseries of algorithmic improvements that have helped to
reduce the complexity of the model checking problehie second trend is the cumulative effeaft
Moore's curve: a surprisingly reliable predictor of increases in mensirgs and CPU performanc@n
average, every 18 months the speed and memory size lnéshavailable machine doubleEhe effect of

these two trends on the feasibility of solving the verification problerf faris illustrated in Figure 1.

10000

Memory
(Megabytes) it 1 I2 - — — — Available Memory to
* * - solve problem
-
- ,3
100 — ~ v Required to
P 4 solve problem
10 _ =]
1
1980 1987 1995 2000

Fig. 1 — Feasibility of Model Checking— Memory Requirements.

Figure 1 shows the amouot memory that is available on the best available machine in each year between
1980 and 2000 (dotted), and the amount of memory that should minimally be available to solve the verifi-
cation problem for our first pc model (solid). The markimdicate successive algorithmic improvements in

the construction of the verifiewhich itself slowly evolved from a basic reachability analyzer into a full
logic model checking system nam$gin [H97]. Mark 1 shows the memory requirements of our first algo-
rithm from 1980. Mark 2 shows the memory requirements when the proof approximation algorithm that
was introduced in 1987 [H87] issed at maximum precision (giving coverage that matches the one pro-
duced by a fully exhaustive reachability analysis)ark 3 shows the drop imemory requirements when
partial ordereduction techniques are used [HP94], and mark 4 a smaller drop when some additional model
reduction techniques are added [H99].

A very similar figure can be drawn for the runtime requirementfowhal verification applications, as
illustrated in Figure 2 A reduction in the runtime requirements for a full verificatidnheTpc model can
then be measured dropping from 7 days in 1980 to 7 setodalg, again by virtue of the combination of
algorithmic improvementsand the effect of Moore’s curvdt should be added that the problem used to
produce these data was not chogeanhance any aspect of these treriets.more carefully selected prob-
lems, for instance, the improvements of individual algorithms can be méatektsignificantly better. Our
purpose here is, however, not to showcase specific algorithms, but to illustrate the existence of a trend.

The nature of this trend is clear. Even if no furtalgyorithmic improvements are made, software verifica-
tion techniques will be able to handle increasingly compleblems by virtue of the exponential increase
in the capabilities of available machineghis increase in power has meant that today we can perform

(Tsi;ncinds) 100000+, \ I « Time needed to solve
~ problem on fastest
\ . 8 hrs machine each year
10000 ——s]
7 days \ = = = Time on 1980 machine
1000

100 \\ 7 secs
10 h

1

1880 1987 1995 2000

Fig. 2 — Feasibility of Model Checking — Runtime Requirements.

formal verification on fairly detailed models of telephone switching software [HS00]. Wtwttenuation
of the trend could mean for tomorrow can only be speculated. Suffice it to say that the prospects are good.

Modeling

For arbitrary programs with potentially unbounded capacity to store and retrieve informatialgorith-

mic techniques can exist for mechanically provatigproperties of interestin this form, the problem is
undecidable [T36].If we can put a finite bound dhe possible memory use of a program, we obtain a sys-
tem with a finite number gbossiblestates (i.e., configurations of memory), that can in theory be enumer-
ated. We can conceive of constructing the execution graph of sucprogram, to capture the
successor/predecessor relation for all reachable memory configuralibissapproach is nopractical,
though, considering the potential sizithe graph and the likely computational expense of computing, stor-
ing, and analyzing it.For distributed systems the problems is still more severemaienow have to deal
with all possiblecombinations of the memory configurations of all concurrently executing processes.
this level of detail, the solution of the problem remains well beyond reach.

For many properties of interest, though, the fakyailed representation of an execution graph contains far
more information thams needed for verificationln many cases, even a coarse abstract representation of
the graph sufficesThis abstract representation can be obtaimgdemoving unwanted detail from the sys-
tem description (i.e., the progranm such a way that properties of interest are preserved. The abstracted
system description can be used to generamaller abstract execution graph, which can effectively be
used in a verification proces3heabstract system description is calletiael of the original system.

The purpose of the construction of a modeobifacilitate analysis: by using abstraction we can trade imple-
mentation detail for analytical poweThemodel couldbe created as a mathematical description, as a set of
axioms, rules of inference, and theorems to be prouethat case, botimodel and proof are most likely
constructed manually, perhaps with some assistance from mechanical or human proof checkeng
cases the model could also conceivably be created as a physical stragitotatype device of whicthe
basic properties may be verified by measurement.

Automata

We will focus on models that are expressedcaasmata. The automata models can in some cases be
extracted from program source and analyzed mechanica@lg.potential automation of the verification
process gives thispproach an advantage over manual proof methods, although it is understood that
automation may also bring limitations to the potential scope wérdication. Model construction and
model extraction are based sgstematic abstraction, such as slicing [T95], data hiding, and mapping
[CLG94],/CD00],[V00]. Wewill discuss abstractioand automated model extraction techniques in part IV

of these notes.

Logic
We have so far suggested that mvay be able to obtain automata models from program sources, and that

these modelmay suffice for the analysis of properties. We have not yet discussed how these properties can
be expressed in such a way that automated analysis becomes possible.

Propositional linear temporal logic (LTL) allows us to make very corgtsements about required causal
relations between the events in a distributed system [P77],[EE3JhLTL formulae, furthermore, can be
converted mechanically [GPVW95] into arautomaton [T90] thatan be used in the verification process.
An automata-theoretic verification method [VW86] proceeds follows.

1. Theproperty to be verified is expressed as a formihalL TL, and thennegated to - f. Thenega-
tion reverses the meaning of the formula to capalireystem behavior that deviates from the origi-
nal requirement.Thenegated LTL formula is converted into @mautomatorA, using the procedure
outlined in [GPVW95],[EHO0]. The negated propertautomaton is designed to accept all system
behavior that satisfies the negated formula, and that therefore violates the original requirement.

2. Thepropertyis used to define an abstraction which guides the definition of an automata model for
the system to beerified. The resulting system modgtaptures all possible system behavior at the
required level of abstraction.

3. A modelchecker, such aSpin [H91], can now be used to compute the language intersetimin
property automatoA and system automatd) as illustrated in Figure 3This language intersection
contains all feasible violations of the original LTL forméildf it is empty, no violations of the prop-
erty are possible.

4. Anerror sequence (any violatiamcovered in the last step) is interpreted at the source level of the
original program (i.e., lifted) and reported to the user for action.

G

Fig. 3— Intersection G of System S and Automaton A Derived from LTL Forrfula

There are many issues that we have silently skipped butthat need carefully consideration before this
method can be used.

. Distributed systems often have dynamically changingbers of active processes. In general there
will be one separate automaton model for each asynchronously executing process in the system.

. The verification framework should apply both to finiteminating, system executions, and to poten-
tially infinite executions@-runs) [VW86],[T90].

. Optimization and reductiotechniques must be considered to help reduce the amount of work
required for the computation of languagérsections [P96],[EH00]Despiteall that, the computa-
tional complexity of verification can still excedlde bounds of available resourcBsst-effortrelief
strategies should be available for these cases.

. The validity of an abstraction cannot be taken for granfedincorrectuse of abstraction may pro-
duce false error reports or cause valid error reports to be missed.

. And finally, we should take intaccount that a system can only be verified subject to a reasonable set

of assumptions about tleavironment in which it is used.Justlike the formulation of logigproper-

ties, it can be hard to derive suabsumptions automatically. The validity of a verification result will
always beconditional on the accuracy of these formalized assumptions. The assumptions should
therefore be conservative.

Overview

In the remaining sections of these notes the detailseo§oftware verification method sketched above will
be filled in. In Section2 we begin by reviewing the automata theoretic verification method, the definition
of w-automata andv-acceptance. Weliscuss the formal relation between propositional linear temporal
logic andw-automata, and consider the basic procedure for on-the-fly verificatioriruaadexisting LTL
model checkeBpin. In Section 3 we look at optimization and reduction strategies, including model reduc-
tion, partial order reduction, and proof approximation methddsSection 4 we discuss model extraction,
and systematic abstraction techniquesSection 5 we reflect briefly on our findings.

2. Automata

We will model the actions of processes in a distribstggstem in terms dftates andtransitions (i.e., state
transformers). Thesenotionsare captured in the definition of a finite automat@utomatamodels are
intuitive and have been used frequeritly the description of distributed systems, also by practitioriers.
particular there is a long history of their use for the definition of data communication protdhelsell-
known definition of the ’'alternating bit protocol’ from 196fr instance, was based on an automaton
description [BSW69].

2.1. Finiteautomata

We begin with a standard definition of a finite automaton, defined over finite execenthien general-
ize the definition to capture also infinite executions.

A finite automaton is a tuple {S,sq, L, F, T}, with S a finite set of 'statess, 1S is a predefined
'initial state,’ L is a finite set of labels ymbols,” FOIS is a set of 'final’ states, and[ISxL xS is
the "transition relation.’

The structureof a finite automaton can be represented by a graph, as illustrated in Figure 4, Vertices repre-
sent states, edges represent transitions, and labels appear as annotations on tAepadigesrough this

graph can then be interpreted as an execution, called a 'ruhg @utomaton (we will define it more pre-
cisely below). A run is saido beaccepted by the automaton if it starts in the initial state and ends in one of
the final states in set FOf course, this particular notion of acceptance applies only to finite runs.

Fig. 4 — The Structure of a Finite Automaton.

The labels from set L cdoe treated as abstract representations of arbitrary program 'actidris would
include access tdata objects, to modify or to test their value (their 'statdiy run of the automaton then
defines a sequence of labelSor a fixedinterpretation of the labels in a giveoontext we can restricthe

notion of acceptance to only those runs that would be feasible under the given interprétagiantion

that is represented bylabel, for instance, may only be feasible (executable) under precisely stated condi-
tions. Astrict definition of the interpretatioof labels in a given context will not be needed for these notes,
so we will not pursue it here.

For the example automaton in Figure 4 we have S5 $1,S5,53,S4}, L={ 0g, 01,05, 03, 04, 05 },
F={s;}and T={(So,00,51), (S1,01,52), (S2,02,51), (S2,03,S3), (S3,024,S2), (S2, 05, S4),

}. This automatorcould be used to model the life of a user process in time-sharing system, as controlled
by a process schedulegtates, then represents the ’Initiadtate where the process is being instantiated,

is the 'Ready’ states, is the 'Running’ states; is the 'Suspended’ state, e.g., where the prosdsi®cked
waiting for a systentall to complete, and, is the 'Final’ state, reached if and when the process termi-
nates. Aninterpretation of the symbols in set L for this system camés the scheduler’s 'Startction,

o4 is 'Run, a5 is 'Suspend,t 5 is 'Block,” a4 is 'Unblock,” anda 5 is 'Stop.” An acceptable finite run of

this system is the state sequensg, §:1, S,, S4}, which corresponds to the sequence of scheduler actions
Start, Run, and Stop.

2.2. Runs

A more precise definition of threin of an automaton can be given as follows.
0=(Sp,S1,S2, * - ,S¢) IS arun of finite state automaton {Ssq, L, T, F}, if and only if (iff)
(O0i,0<i <k : Oo,a0L O (si,0,Si+1) OT).

We can also define a run as an ordered set of labels from L instead of an ordered set of statd$ fham S.

automaton is non-deterministic, which is generally the case in software pfeding applications, the
two definitions are of course not equivalent.

Set L defines théalphabet’ of label symbolsEachrun of the automaton defines one or maadsover
that alphabet(Notethat adjacent states in the run may be connectedluttyple symbols.)In classic finite
state automata theory, a finite run is said t@beeptedff it terminates at a state within set Fhe set of
words that correspond to accepted runs is referred to éntheageaccepted by the automaton.

A finiteruno=(sq,S1,S,, * - *,S¢) Of finite state automaton {Sy, L, T, F} isacceptedff s, OF.

We would like to be reason equally about terminating and non-terminating sydteogh, and therefore
we need a broader definition of acceptance.

2.3. Hichi-acceptance

There are several ways to extend the notion of acceptance to infinite runs YWeGajill use asimple
method called Bechi-acceptance.

An infinite run o of finite state automaton {S,, L, T, F} isacceptedff it at least one state from set
F appears infinitely often io.

For the automaton in Figure for instance, we could define the Running sstas a Behi-acceptance
state. Inthis case all infinite runs would then necessarily be accepting, since therenexastsngly con-
nected component in the graph of Figure 4 that exclsigles

A simple extension of finiteuns will also allow us to interpret finite runs as special cases of infinite runs,
for the purpose of deciding acceptance.

The stutter extensioof finite runo=(sy,S1,S,, - - +,Sk) Of finite state automaton {Sy, L, T, F}is
the concatenation af with s an infinite repetition of final statg,.

The infinite repetition of the final state of a finite run corresponds tadhition of a dummy self-loop
transition §,,€,s,) to set T, minimally for each statg in set F, where is a predefined label representing
a nil action.

A slightly more general definition of Bhi-acceptance is known &eneralized Hchi-acceptanceln this

case, we allow for more than one set of fisigtes F, and require that at least one state from each of these
final sets appears infinitely often in a ruAn unfolding method, known aShoueka’s flag-construction
[C74], can baused to translate a GeneralizetBisautomaton into a standard on&/e will see an example

of a generalized Bahi-automaton below

A number of interesting properties of hi-automata are decidable, specifically:
. non-emptinessleciding whether a giveniiBhi automaton accepts any runs at all, and

. intersection given two Bichi automataconstructing a new automaton that accepts precisely those
runs that are accepted by both of the given automata.

The model checking procedure relies on both of these methods.

2.4. Products of automata

The joint executiorof two finite automata can be defined as product of auton¥diareare several ways
to define an automataroduct, reflecting differences in the assumptions about the semantics of joint behav-
ior in a distributed system.

The automata product of the finite automata$®, s§, L”, FA, TA} and {SB, s§, LB, FB, TB} is the
finite automaton {Ssy, L, F, T}, such that S $*xSB, sq=(sh, s§), L = (LAxLB)Oe, F={ (s,t)O
sOFA OtOFB}, and TOSXLxS

The interesting part is to provide a precise definition of the transition relation T. We can, for instance,
define it as follows:

T={((s1),(a,B),(v,w)) O((s,a,v)OTA O (a=eOs=v)) O ((t,B,w)OT® O (B=eOt=w))}.

This definitionallows for both joint and independent transitions, where one automaton changes state while
the other performs a self-loop enA ’joint’ transition can baused to model synchronization conveniently,

e.g. rendezvous operations most cases of interest wan also remove the joint operations from the defi-
nition without loss of generalityTheresult ofa joint action can usually also be modeled with a sufficiently
finely grained interleaving of atomic actions.

The product AxB differs from the product BxA only in the naming conventions for statetsaasitions:
the graphs corresponding to these two products are isomorphic.

2.5. Logic and automata

The next important step we haventake is the establishment of a direct link between a general formalism
for expressing logical requirements on a distribiggstem and automata representatiofisatlink is pro-
vided by propositional linear temporal logic.

Linear temporal logic (LTL) was proposed in the late seventies by Amir Pnueli as a formalisasion-

ing about concurrent systerfi¥77]. Themain notions used in the definition of temporal logic were derived
from earlierwork onTense Logics for tightening arguments relating to the passage of time. Curiously, this
work did not originate in computer science but in philosophy [P57],[P67],[RU71].

Propositional linear temporal logic can be used to formally state properties of system exauititidhe
help of boolean propositionte classic boolean relational operators, and a small number of new temporal
operators that we discuss next. The truth of a temporal formula is always defined over infinite runs.

If a temporal formuld is valid (holds) forw-run o, we write:
o=t
We will write ofi] to denote the suffix of a rua starting at the i-th element, witj1] = o.

The first temporal operator we will discuss is the binary opetstds, first introduced in [K68]and repre-
sented by the symbbl. Thereare two variations of this operatoryweak version and atrong version.

Weak Until (U): 0i, (afi] |5 (pUa) = ofi] |= qU(afi] [= pLoli+1] |= (pUQ)))-

This definition doesot require that sub-formuawill eventually hold. The strong until operator, written
U, adds that requirement:

Strong Until (U): 0i, (afi] [= (pUg) < ofi] |5 (pUa) O 0j, j=i, ofi] [g).

There are twespecial cases of these definitions that are important enough that two separate operators are
defined for them.The first the case where the second operand of the weak until operédtse, which
leads to the definition of the unary operatppronounced 'box’ oAlways.

Always ([O): Oi, (ofi] Fop = of] |- (pUfalse)).

This operator captures thmportant notion of safety dnvariance. The second special case is when he
first operand othe strong until operator tsue, which leads to the definition of the unary opera&topro-
nounced 'diamond’ oEventually.

Eventually (¢): 0i, (ofi] F9¢gq = oli] |= (trueUq)).

This operator captures the important notion of inevitabilitiveness

There are many standard typescofrectness requirements that can be expressed with the temporal opera-
tors we have definedTwo important types are defined below: recurrence and stabflityecurrence prop-

erty is any temporal formula that can be written in the fafp; the dual property, writtefrp, is called a
stability property Therecurrence properwp states that it islways true thap will be satisfied at some
future point in the runThestability propertyorp states that there is point in then from wherep is invari-

antly satisfied.

There are other interesting types of dualifor instance, it is not hard to prove thatany context- 0p
= Ompand-0p < O -p. Somecommonly used equivalence rules are listed below, cf. [MP91].

[1] - oOp - O -p

[2] -%p - a-p

[3] -(p U - (=q) W(-p U -q)
[4] -(p UQq - (=q)U(-p U -q)
[5] o(p U q) - op U oq

[6] O(p Oaq) - Op U <q

)

[7] pU(gOr)
[8] (pUq) UTr
[9] pU(qgOr)
[10] (p Oqg) UT
[11] =X(p O q)
[12] a(p O q)

(pUqg O(pUr)
(pUr) O(gUr)
(pUag O(pUT)
(pUTr)y O(guUr)
op O =0q
¢op O <oq

)

)

)

)

)

2.6. Implication and causality

It can sometimes be hard to interpret theaning of more complex temporal logic formulae.common
case of confusion is to mistake logical implication for tempoaaisality. To state, for instance, that the
occurrence of event p (say, a request) will inevitably lead to the occurrence of gtlenicqrresponding
response), one would be tempted to write

p-q

which is incorrect.By the definition of logical implication, this formula would staterely that in the ini-
tial program state we must hafre p 01 q). Thereis no statement on a required temporal relation between p
and g. Slightly better would be to write

p-0q

but also this is most likely not what was intended, since it still requireshimanitial condition holds pre-
cisely in the initial statelf p does not hold initially, no check at all is implied here for any future occur-
rences of p.Somewhabetter again is therefore to write:

o -0

but even this is most likely not what the user me&iearlyif event p never occurs, then the condition will
be vacuously truelf the user went to the troubdé writing down the more complicated form of the expres-
sion that includes q, there is probably an expectation that the trivial case

o-p

does not apply (i.e., isot satisfied). Inthis case it isvise to prove the absence of the trivial case explicitly
with a separate checkNote carefully that ifit is acceptable that some runs contain p and some do not, it
will notsuffice to prove that

= [O= p = 0 p

because this states that p must eventually occur at least oalteuns. If p occurs insomebut notall
runs, neithet p, nor its negatiom - p, will hold.

2.7. Thenext operator

There is one other standard temporal operator that we will exclude from our toolkitheugh it cannot
be defined in terms of the other operatdtss usually defined as follows.

Next (X): i, (ofi] FXg < ofi+l] |=q).
We have two reasons to reject the use of the next operator.

. The precise meaning of the operator is unclear in the context of concurrent sgét¢inds]. A run
of a concurrent system is typically givenasinterleaving sequence of the runs of a number of par-
ticipating processes. Whereas a 'step’ in the ruam sdquentially executing single process reflects the
progression of a computation in a meaningful way, the same is not necessarily true foria thep’
run of a concurrent systerithere is, for instance, no simple way to relate these steps to a global
notion of time. Consider, for instance, the effetinetwork latency, message overtaking, message
duplication, etc.

. We can define a powerful optimization tife verification process [HP94] for the stutter-invariant
subset of full LTL. Any LTL formula that can be written without the abéhe next operator is guar-
anteed to be stutter-invariant and vice-versa any stutter-invariant propositional LTL property can be
written without the next operator [P97].

2.8. Verification

The most significant benefit of the use of LTL imadel checking procedure is that for every LTL formula
one can construct 8uchi-automatonA that accepts precisely the runs that satisfy the formula
[VW86,GPVW95,V96,DGV99,EH00,SB00]. Bgonstructing thigoroperty automaton for a given LTL
formula, we can now find all runs thattisfy the formula in a syster by intersecting the property
automatonA with the system automatofi Better still, by negating the property before the property
automaton is constructed, we can similarly findrafis thatviolate the original property.Computingthe
intersection amounts to computing amomata product, a well understood proceddtais, in a nutshell,

then is the automata-theoretic verification methdul.the following we will first consider the relation
between LTL formula and@uchi-automata a little more closely, and then look at the computation of the
intersection product.

2.9. Construction

The essence dhe procedure that can be used to constructchiBautomaton from an LTL formula is as
follows. Firstwe need to define the closure of a temporal formula.

Theclosure of temporal formuld, CI(f), is the set of all sub-formulae bénd their negations.
For example, ip is a boolean propositional symbol, thekoop) = { ¢op, —=<op, op, - op, p, =p }-

Let Prop(f) be the set of all boolean propositional symbolg #or the exampleRrop(¢op) ={ p}. Each
state in the automaton that is constructed contains a list of those subfoinon&#(f) that are satisfied in
that state.Werefer to that list for stateasAnn(s).

Given a temporal formulf the correspondin@eneralized Biichi-automaton is { Ssp, L, T, F }, where S
=200 s is the state in S favhichAnn(sy) =f, L = 27 and F = {F,, ...F, }. Thatis, each element
of the L corresponds to a unique truth assignment to the propositional symiBadg(ii).

Transition relation T is now defined as follows:

(sy,s) O T if and only if the truth assignmewnt] L satisfies all non-temporal
formulae inAnn(s), and
((PU) OANN(s) - (qOAnn(s) O(pOAn(s) U(pUag) Us)))

There is one sub-set in F for each sub-forniml€l(f) that contains a strong until operator. Assume there
aren such sub-formulaeForthe i-th sub-formulgp U q) in CI(f), (1<i<n), we have:

F,={ s:(pUQq) D0 Ann(s) OgOAnn(s) }

Only the strong until sub-formulae contribute to théttacceptance conditiondVe can use Choueka’s

flag constructiormethod [C74] to convert the generalizetcBiautomaton into a standard orié we con-
sider the automaton as a graph this can be done by makipgjes ofthe graph, numbered d.. We then
change the edges exiting from all state§ jrin thei-th copy of the graph,l<i <n) to point to their suc-
cessor in the (i+1)-th copy of the graph, and the edges exiting frostates i, in the n-th copy of the
graph are redirected to their successors in the 1st deipglly, only thestates in s&t, in the n-th copy of
the graph are preserved ascBisaccepting states. All other states are mamteaccepting.To be accepted,
any infinite run in the final automaton must now necessardiude at least one state from each set in F,
which secures that all strong untils will be satisfied in the run.

The above construction can be improved significantly witlomthe-fly construction that avoids creating
redundant states. The basic algorithm for doing so was introduced in [GPVW95]. Further improvements
can befound in [DGV99],[SB00],[EH00]. As an example, the automaton that corresponds to the formula
O0p, as computed by tH&pin model checker [H97], is shown in Figure 5.

Fig. 5— Non-Deterministic Bchi Automaton for LTL formulép.

2.10. Model checking

Assume we are given a finite automaton representing a systens8, sg{ LS, FS, TS} and a propertyf of
S expressed in LTLSis generally defined as the product of smaller component automata representing con-
current processes.

Propertyf and its negatiom f, contains propositional symbaés operands, where the truth-value of each
proposition is defineds a boolean expression over the states of S. (That is, for any given state of S, any
given propositional symbol evaluates to either true or false.)

If we convert- f into Buchi-automaton A = &4, sf, LA, FA, TA}, the labelsin L” will always be boolean
combinations of propositional symbols, without temporal operatéoseachstate in S we can evaluate the
expression for each such label, and determine its truth vakidval(a,s) be the result of evaluatingbel
aOLA at statesd S5,

To compute the intersection of tlautomata S and A we can compute their automata product with a
restricted transition relation defined as follows:

T={((s,t),(a,B),(v,w)) O((s,a,v)OTS O (t,B,w) OT" O Eval(B,s)=true}.

All states inS® are definedo be accepting by settifg® =S°. Any infinite run accepted by this intersec-
tion product of S ané now corresponds to a run of S for which this satisfied and therefore the origi-
nal propertyf is violated.

2.11. Complexity

The computational complexity of the model checking procedure is clearly linear sizéhef the product
of S and A. This statement, however, hides two basic facts:

1. Thesize of Acan beexponentiain the size of the LTL formul§ measured as the number of tempo-
ral operators used.

2. Thesize of S can bexponentialn the number of component automata that is used to compute it.

Although both observations seem equally pernicious, the first Isdarso than the second. Temporal for-
mulae of practical value contain only few tempaspkrators, and the property automata generated from
these formula typically contain very few states, typically between two andcfivEigure 5). The precise
meaning of formulae that generate larger automata can be hard to determine, and they areahlarefore

ited value. Thenumber of components in a large concurrent system, howeasepnly be restricted with
abstraction techniques, which in themselves need justification before they can be relied upon in verification.
The typical size of a system automatooa® easily exceed millions of states, and is the true source of com-
plexity in model checking application®ptimizationtechniquesan be used to restrict the size of both A

and S.

2.12. On-the-flyverification

The model checking procedure we have outlined léisé well to an implementation that allows on-the-
fly verification. This means that we can instrument the verification system in such a way thatétean

the presence of a violation of the property before the intersection prodsidtei and property automata

is fully computed, and in many cases even without construction theyfiil#m S.Firstobserve that violat-

ing runs are always infinite runs that contain at least one accepting state infifiéaly This means that
there must exist at least one accepstafe in the intersection product of S and A that is both reachable
from the initial state of the product and reachable from itself.

Proving that such an accepting state either exists or does not exist can l@tddne basic depth-first
search procedurefirst to detect all accepting states that are reachable from the initial state, and second to
identify the accepting states from this set thatraeehable from themselve$he second part of the prob-

lem amounts to detecting cycles in a finite graph, and as such woalddwms fit for Tarjan’s algorithm for
constructing thestrongly connected components of a graph in linear time [T#¥2practice we can do
slightly better.

2.13. Cycledetection

The problem is to efficiently detetite existence of a cycle through an accepting state in a finite giaph.

the worst case the algorithm we use to solve ghablem will visit every node in the graph, and therefore
the complexity cannot be less than linear in the size of the gfphif the construction of thastrongly
connected componentan be avoided, this problem may be solved with lower overhead than Tarjan’s algo-
rithm.

Tarjan’s algorithirstores the nodes of a graph in a single depth-first traversal. Each node is typically anno-
tated with two integer numbers |@vlink and adepth-firstnumber, e.g. [AHU74].This requires storing

with each node 2xlog(R) additional bits of information, to represent the lowlink armttie-first number

of a node, if R is th@aumber of nodes in the grapn practice, with R unknown, one typically uses two
32-bit integers to storthis information. We will explore an alternative method that allows us to solve the
cycle detection problem while adding just two bits of information to each node.

We begin by discussing a simple algorithm for a restricted clasgobperties, i.e., proving the absence or
existence of non-progress/cles in a finite graph [H90],[H91]The algorithm works by splitting the
depth-first search into two phases with the help of a two-stateon automatonNext we discuss a

stronger two-phase search algorithm that can be used to prove the absence or existence of acceptance
cycles, as required for LTL model checking [CVWY92],[HPY96].

2.14. Non-progresgycle detection

We begin by taking the product of system automaton S with the two-state autoniltistr&ied in Figure

6. AutomatonD can non-deterministically decide to move from its ingialtes, into an alternate stat,

where it will then stay foreverThe label on this transition i€, the nil-action. We assume that zero or
more states in the automaton S have been identifiptbgsessstates. Waewill be interested in finding any
infinite run thatcontains only finitely many such progress states. This corresponds to solving the model
checking problem for LTL properties of the tyfie np, with np a predefined state property thatrse if

and only if the system is not in a progress state.

€
' ()
Figure 6 — Two-State Non-deterministic Automaton

for Detecting Non-Progress Cycles.

We computehe asynchronous product of S and D, and perform a slightly modified depth-first search in the
reachability graph for that product. Naturally, the produdtbe at most twice the size of S, containing one

copy of each state with D in statg and possibly one more copy with Dsn

Each state s in the product is a tuple consisting of a state of D and a staleevD#&i(s)= trueif D is in
statesy, and letNp(s)= trueif s is not a progress statd@he search starts from the initiatate of the prod-
uct of S and D, witlD in states,. Thenon-progress cycle detection algorithm maintains aisigedof all
states it has encountered in the search, and a stacgbf states currently being explored.

dfs_A(s)
{
add s to visited
if Dm(s) or Np(s)
{ push sonto stack
for each successor s’ of s
{ if s'notin visited
{ dfs_A(s")
} else if 8" in stack and = Dm(s)
{ report non-progress cycle
stop
} }
pop s from stack
}
}

The algorithm ignores all successors of progress states as sooneash®s state;. Every cycle that
exists with D in state, is therefore necessarily a non-progress cycle.

Property. If non-progress cycles exigtfs A() will report at least one of them.

Proof. Suppose there exists reachable state that is part of a non-progress cycle, i.e., it can be
reached from itself without passing through progress sta@emsiderthe first such state that is
entered into the second state space (upon the transition of D to its alternate state), and call it

Stater is reachable from itself in the second state space and must find itself in the depth-first search
belowr unless that search truncates at a previously visited state outside the current sear€alitack.
that previouslyisited states. We know thatr is reachable fromr (or else it would not block from
reaching itself) and also thats reachable from. This means that alswis reachable from itself in

the second statespace viaThis, however, contradicts the assumption thatas the first such state
entered into the second state spatkis means that either revisits itself or a successorrakvisits

itself before that happensn both cases the existence of a non-progress cycle is reported.

Whenever a cycle is detected, the corresponding run can be reproducdtidroomtents of the stack: it
will contain a finite prefix of non-repeated states, and a finite suffix, starting at the statethatlstack
that was revisited, with only non-progress states. This capability to produce exact counter-et@hples
demonstrate the violation of a property is critical in a model checking system.

To implement the algorithm it is not necessary to store two full copies of each reachable state. It suffices to
store the states once with the addition of just two bits of memory [GHI8first of the twobits records

if the state was encountered in the first statespace, and the second bit records if the state was encountered in
the second statespace. Initially both bits are ®@fie can encounter only the libmbinations 01, 10, and

11, but not 00.(The sstate is neither presenttime first nor in the second statespace for bit combination 00.)
States may be either encountered first in the second statespace, aim tlatefirst statespace, or vice

versa. Ondit, e.g. to record only the state of D, therefore would not suffice.

This non-progress cycle detection algorithm was first implemantd888 and later incorporated $pin
[H90],[H91]. An stronger version of this type of two-phase search algorithm imasduced in
[CVWY92]. Thisalgorithm is known as theested depth-first search

2.15. Nestedlepth-first search

This time the transitions of D are placed under the contrtiefearch algorithm. The cdlf s_B(s, d)
performs a depth-first search from state S and statel in D. Let Acc(s) = true if and only if state s is
accepting. Theearch starts with the calf s_B(sy, Sg)

df s_B(s, d)
{

add s to visited

push s onto stack

for each successor s’ of s
{ if s not in visited
{ dfs B(s', d)
} else if s = seed and d=s;
{ report acceptance cycle
stop
} }
if d=s, and Acc(s)
{ /1l remenber the root of the second search
seed = s

/1 perform second search in postorder
/1 with demon noved to state s;
df s_B(s, s1)

}

pop s from stack

}

The search tries to locate at least one accepting state that is reachable from itself. Autoczstandve
from its initial state on at accepting states in S and the move is explohkeafter all successors of the
accepting state have been explored (i.e., in postorétei§.now no longer sufficient for the secoselarch

to find any state within the depth-first search stack, we must require that the seed state from wkich the
ond search was initiated itself is revisited. The proof of correctness for this version of the algpoadim
follows [CVWY92].

Property. If acceptance cycles existf s_B() will report at least one of these.

Proof. Letr be the first acceptingtate reachable from itself for which the second search is initiated.
Stater cannot be reachable from any state that was previously entered into the second state space.
Suppose there was suclstatew. To be in the second state spaceither is an accepting state, or it

is reachable from an accepting state. Call that accegtitbgy. If r is reachable fromw in the second
state space it is also reachafsamv. But, if r is reachable fromr in the second state space, it is also
reachable fronv in the first state spacelhereare now two cases to considdtither(a)r is reach-

able fromv in the first state space without visiting states on the depth first search stack, ds (b) it
reachable only by traversing at least one statet is on thelepth first search stack (cf. Figure 7).

In case (a)r would have been entered into the second state space beforto the postorder disci-
pline, contradicting the assumption tas entered before In case (b)y is itself an accepting state
reachable from itself, which contradicts the assumptionrtigthefirst such state entered into the
second state space.

2
o
©

Fig. 7— States x, v, and r.
Stater is reachable fronall states on the path fromback to itself, and therefore none of those states
can already be in the second statespace when this search begipathrtierefore cannot be trun-
cated and is guaranteed to find itself in the successor tnee.

Like df s_A, this algorithm requires no more than two bits to be added to every reachable state timeS,
overhead remains minimal significant advantage of this methodmobdel checking is also that the entire
verification procedure can tgerformedon-the-fly errors are detected during the exploration of the search
space, and the search process can be cut short as soon as the first error i$ foumod.necessary to first
construct an annotated search space before the analysis itself can begin.

We can check non-progress properties with algoriifis_B by defining the temporal logic formuda np,
with np equal totrue if and only if the system is in@on-progress statelheautomaton that corresponds to
this formula is a two-state automaton shown in Figure 8.

true

s

Fig. 8 — Two-State automaton fér np.
To perform model checking we can now take the intersection product of the automé&ignre 8 with
system S, and use algoritldhs_B to detect the accepting rungVe thus potentially incur two doublings
of the search space: one due to tiested search inherentdf s_B and one due to the product with the
property automaton from Figui& The earlier algorithmdf s_ A solves this specific problem more effi-
ciently by incurringonly the doubling from D.The advantage oflf s_B is nonetheless that it can handle
any type of LTL property, not just non-progress properties.

3. Reduction

A simple and useful type of data object in distributed systems is the fifo (first-in first-out) message

The queue can be usaxstore data, or ‘'messages,’ exchanged between processes in the order in which they
were received. In a typical distributed system there is at least one messagpeaysyamchronous process,

with a capacity to store hundreds of messages, szlebted from a fairly broad set of possible messages.
How feasible would it be to analyze such systems directly, without any form of reduction or abstraction?

Suppose we hawgsuch queues, each wiimough capacity to hold up sonessages, with distinct types
of messagesin how many ‘states’ can this set of data objects Ba2hqueue can hold betweerro ands
messages, with each message being a choice of oneroutherefore, the number of staig is

RQ:

ooo
oo

S .
zm
=0

Figure 9 shows how the number of states varies for different choices of the pargpstensgm.

10
10°
10° 10°
10*
10 10°
10% -
10 10
T T T T T T T T 1T T T T T T T T T 1T
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 910
Variable: m Variable: s
10° 4 m=s =2 10%2 _|
107 10
10%°
10°
1014%
10° - 10°
10" | 10° o
T T T T T T T T 1T T T T T T T T T 1T
1 2 3 45 6 7 8 910 1 2 3 4 5 6 7 8 9 10
Variable: p Variable: s = p

Fig. 9 — Number of Possible Sates for q Message Buffers.
With s Buffer Sots and m Message Types

In the top-left graph of Figure 9, the parameteasnidq are fixed to a value of 2, and the number of mes-
sage types is varied from 1 to 1Thereis a geometriéncrease in the number of states, but clearly not an
exponential oneln the top-right graph, the parametarandq are fixed to a valuef 2, and the number of
gueue slots is varied. Thistime there is an exponential increase in the nurabstates.Similarly, in the
bottom-left graphthe parametens ands are fixed, and the number of queues is varigdain, we see an
exponential increase in the numiudrstates. Worsestill, in the bottom-right graph of the figure, only the
number of message types is fixed and the paranmegerdq are equal and varied from 1 to 18s can be
expected, the increase is now doubly exponenliak number of possible states quickly reaches astronom-
ical values.

3.1. Modeling

The example illustrates the importanceabktraction, reduction, and intelligent model constructiexpo-
nential effects can quickly make simple fm®perties of an uncarefully constructed model intractable, but
inversely they can also help the model builder to prove spbblgerties of complex systems by adjusting
carefully chosen parameterdt. is the objective of design verification to fitveays to construct tractable
models for software applications, so that their properties can be verified formally.

Call E the set of all possible runs of a given systefnmodel checking algorithm will attempt to demon-
strate thaE does not contain any run that violates a correctness requirddmmiconsider a different sys-
tem E’ that contains all theuns contained in sd&f, and many more that are not containedeinNow
clearly, if E contains a violating rurthan so willE’, but not vice versaThis means that a reduction or
abstraction method that extends the number of runs of a system, butoWettly cannot remove any, has
the desirable property that it is fail-safAbstractionsof this type can dramatically reduce the number of
reachable states ofsystem. Note that we can generalize a problem by removing constraints froihé.
behavior of a model that is less specific often can be represented with fewer states.

3.2. Example— afileserver

Assume our task is to verify the correctnega transfer protocol that is used to access a remote file server.
Our first obligationis to determine precisely which correctness properties the transfer protocol must have,
and what may be assumed about the behavior of the file server and of the transmission channel.

Consider first the transmission chann@lssumethe channel is an optical fiber link he verifier's job is
not to reproduce the behavior tfis fiber link at the finest level of detail.he quality of a verification does
not improve when we attempt to do so.

The model we construct should represenly those behaviors that are relevant to the verification task at
hand. Itneed not contain information about the causes of those behalfithe. fiber link has a non-zero
probability of errors, than theossibility of errors must be present in our model, but little mdies types

of errorsmodeled could include disconnection, message-loss, duplication, insertion or disttrtah.
these types of error are present, and relevant to the verification task at hand, it shouldosuoritidel the

link as a one-state demon that can randomly disconnect, lose, duplicate, insert, or distort messages.

A fully detailed model of thdink could require thousands of states, representing, for instance, the cluster-
ing of errors, or the nature of distortionSor a design verification of the protocol, howevienot only suf-

fices torepresent the link by a one-state demon: doing so guarantees a stronger verification result that is
independent of clustering or distortion effectsA model that randomly producel relevant eventthat can

be part of the real link behavior satisfies the requirements for a fail-safe reduction sttatgyht add

error runs, but it cannot remove them.

Next, consider théile server. It can receive requests to create and delete, open and close, read and write
distinct files. Eachsuch request can either succeed or faikead request on a closed file, for instance, will

fail. Similarly, a create owrite request will fail if the file server runs out of spaéeain, for the verifica-

tion of the interactions with the file server, we need not model in detdiér what circumstances each
request may succeed or falDur model of the server caagain be a one-state demon that randomly accepts

or rejects requests for service, without even looking at the specifics of the request.

Our one-state server would be able to exHhibitaviors that the real system would not allow, e.g., by reject-
ing valid requestsAll behaviorsof the real server, however, are represented in the abstract nifothed.
transfer protocol can be provenrrect, despite the fact that our model server may behave worse than the
real one, the result is stronger than it would have been if weelpagsented the server in more det&y.
generalizing the model of the file server, we separate the correctnbestainsfer protocol from detailed
assumptions about on the serv@hemodel that randomly produceH relevant events, is a fail-safe gen-
eralization of the server.

Finally, let us consider the number of message types and message queuesntéwdextdo represent the
interaction of user processes withe remote file serverlf no single user can ever have more than one
request outstanding, we need minimahyee distinct types of messages, independent of how many distinct
services the remote system actually offéFeethree message types aeguest, accept, andrej ect.

If there areq users and only one server, the server must of course know which response corresponds
which request.Supposehat we use a single queue for incoming requests at the server, and mark each
request with a parameter that identifies the u3éis givesq distinct types of messages tleatuld arrive at

the server.If gxsis the total number of slots in that queue, the number of distinct states will be:

gxs

>q.
i=0

What if we replaced the single queue wdthlistinct queues, each efslots, one for each usefSow we

need only one type of request, and the number of queue states is-hd)i.(Whichis better?Note that
every feasible state of the multiple queues can be mapped to a specific state of the sindlerqustaece

by simply concatenating a#l slots of allq queues, in numerical order, into thes slots of the single
gueue. Buthe single queue has many maetates, i.e., all those states that correspond to arbitrary inter-
leavings of the contents tie multiple queuesWith these parameters, then, it can make a large difference
in complexity if we replace a single queue with a set of quelieget an ideaf the difference, assume
s=5 andq=3, then the total number of states of all multigleeues combined is¢1)% = 6% = 2186,

and the total number of states of the single queue is

gxs 15 |

>q = >3 = 21,523,360

i=0 i=0
or about five orders of magnitude larger. If the relative order of mesbatgesen queues is irrelevant, this
can be a significant winThe choice of amodel, then, and the level of detail that it represents, can have a
very substantial impact on the feasibility of verification.

Assuming that we have the smallest possibtalel that still captures the essential features of a system, is
there anything more wean do to reduce the complexity of the verification taBkPtunatelythe answer is
yes. Wewill briefly sketch the intuition behind one such technique: partial order redudfi@will also

look in somewhat more detail at a different approach to the complexity problem: proof approximation.

3.3. Partial order reduction

Consider the automaffl andT2 shown in Figure 10In this representatiothe symbols that label the
transitions are used to represent assignment statements in a simple C-like programming langhuage.
interpretation the two automata share accessdingie integer data object namgdand they each have
non-shared access to a private data object, naraady respectively. Assumthe initial value of all data

objects is zero.
. =1 . =g+2 .
. =1 . =g*2 .

Fig. 10 — Automata T1 and T2.

The interleaving produaif T1 andT?2 is illustrated in Figure 11, where we have restricted ourselves to the
proper interleaving of transitions (i.e., excluding simultaneous transitidingstate labels in Figure 11 are
used to represent the values of the data objects, in the xrgey:

The graph in Figure 11 represents all basic interleavingiseofour statements in the systefilsandT2.
Clearly, the two interleavings of the transitions labededl andy =1 lead to the same reswity=1. The
two interleavings of théransitions labeleg =g +2 andg=g* 2, on the other hand, lead to two different
values forg.

The system is small enough that we can exhaustively write down all possible runs. There are only six:

0, ={(0,0,0)(1,0,0)(1,0,2)(1,1,2)(1,1,4)}
0,={(0,0,0)(1,0,0)(1,1,0)(1,1,2)(1,1,4)}
05={(0,0,0)(1,0,0)(1,1,0)(1,1,0)(1,1,2)}
0,=1{(0,0,0)(0,1,0)(0,1,0)(1,1,0)(1,1,2)}
05=1{(0,0,0)(0,1,0)(1,1,0)(1,1,0)(1,1,2)}
06 =1{(0,0,0)(0,1,0)(1,1,0)(1,1,2)(1,1,4)}

or, if we write them down in a more familiar form, as sequences of transition symbols:

1 x=Lg=g+2y=19=9g2
2. x=1y=19=g0g+2,9=02
30 x=1y=19=02,9=0+2
4 y=Lg=g"2x=1g=g+2
50 y=Lx=19g=02,9=g+2
6: y=1x=19=0+20=9"2

Sequences 1 and 2 differ only in the relative order of executigi=df andg = g+2, which are indepen-
dent operations. Similarly, sequences 4 and 5 diffeéhe relative order of execution of the independent
operationx = 1 andg = g*2, By a processf elimination, we can reduce the number of distinct runs to just
two, for instance to:

2. x=1y=19=0+2,0=0"2

3 x=1y=10=0"2,09=0+2
All other runs can be obtained from these two by one or more permutatiadgoént independent opera-
tions. Wehave the following mutual dependencies:

g=g*2andg=g+2 because they touch the same data object,
x=1 andg=g+2 because they are both part of T1,
y=1 andg=g*2 because they are both part of T2.

The following operations are mutually independent:
x=1landy=1,
x=landg= g*2,
y=landg= g+2.

Fig. 11 — Full and Reduced Depth-First SearchTaxT2.

Using this classification of dependent and independent operationsaasitions, we can partition the runs
of the systeminto two equivalence classes: {1,2,6} and {3,4,5\Vithin each class, each run can be
obtained from the other runs by one or more permutations of adjacent indepeadsgitibns. The even-
tual outcome of a computation remains unchanged under such permutations. For verifith&mefdte
would suffice to consider just one run from each equivalence class.

For the system from Figure 11 it would suffice, for instance, to consider only runs 2 émeffect this
restriction amount$o a reduction of the graph in Figure 11 to the portion spanned Isglttiarrows, and
including only the states indicatedbold. Thereare three states fewer in this graph and only half the num-
ber of transitions, yet it would suffice to accurately prove LTL formulae such as:

o(g=0 O g>x),
0(922),
(9=0) U (x=1),

3.4. Visbility
Would it be possible to formulate LTL propertigast hold in the reduced graph, but that are violated in the
full graph? To answer this question, consider formula

o(x2y).
This formula indeed has this unfortunate property. So what is diffefEm?ormula secretly introduces a
dependence that wassumed not to exist: it relates the values of the data okjantky, while we earlier
used the assumption that operations on thwsedata objects were always independértte dependence
of operations, therefore, does not just depend on automata structure and access to data, but also on the logi-
cal properties that we are interested in proving about a sys$teme remove the paik= 1 andy = 1 from
the set of mutuallyndependent operations, the number of equivalence classes of runs that we can deduce
increases to four, and the reduced graph gains onestateaand two extra transition§he new graph will
now correctly expose the last LTL formula as invalid.

10° — -7
- / -
10° — -7
_ -
Number of 10* Standard Search _ -~
States Generated , -7
(Log-scale) 10° _~" +Partial Order Reduction
10% 7
10t
[[[[[
1 2 3 4 5 6 7

Problem Size (Number of Processes)

Fig. 12 — Effect of Partial Order Reduction.
Best Case Performance. Leader Election Protocol with N Processes.

The potential benefits of partial order reduction ilustrated in Figure 12 Shownis the reduction in the
number of states in the produptaph that needs to be explored to perform model checking when partial
order reduction is either enabled (solid line) or disabled (dashed line). In this case, the improvement
increases exponentially with the problem size. It is not hacdnstruct cases where partial order reduction
cannot contribute any improvement (e.g., if all operations are depentleatfhallenge in implementing

this strategy in a model checker is therefore to secure that in the worst case the graph construation will
suffer any noticeable overhea@his was done in th&pin model checker with atatic reduction method.

In this case, the dependency relationscamaputed offline, before a model checking run is initiated, so that

no noticeable runtime overhead is incurred.

To formalize the many notions we have casually introduced ab@vaeged to introduce the formal frame-
work of anextended finite automaton, which includes the definition of a context of data objects and an
interpretation of transition symbols withihat context.We must also formalize the notion dépendence

of operationsgequivalence of runs, andequivalence robustness of properties. For detailed treatmentsf
these notions we refer to [Ma87, Kw89, P94.description of the implementation of partial order reduc-
tion techniqueswithin the Spin model checker can be found in [HP94], with a small adjustment that is
explained in [HPY96].A formal proof of correctness of the algorithm is given in [CP99].

3.5. Proof approximation

The first automated verification systems based in graph analysis were developed abouyeaenggo
today. Sincethen, the computational complexity has been the single most dominant issue that is being
addressed in this fieldWe have better algorithms today, smarter tools, and significantly more powerful

machines, but the problems we attempt to solve havegedsm in size.The problem of managing compu-
tational complexity is still the single most dominant issue inftaid, and given the nature of the problem
we are attempting to solve, it is likely to remain that way.

With proper abstraction and modelitgchniques, with reduction and minimization algorithms, and with
access to the largesbmputers impressive results have been achieved. Where twenty years ago it could be a
challenge to verify the toy alternating bit protocol, today we can verify complex sofpanaing several
thousands of lines of code. Yet, one does not have to look far to find examples of applications where the
computational resources that would be requiredgirously verify the simplest model of the smallest sep-
arable piece of the application still exceed practical constrairis.question isnow what we can do in

these situationsWe can blame the model builder, and wait for a better modid.can blame the machine,

and wait for more a powerful on&Ve can blame the verification tool, amgit for better algorithmsOr,

we can try to design a different type of search algorithm, that attémapproximate the result of a verifi-

cation as closely as possible within the currently available constraimgever those constraints may be.

We will investigate such techniques here.

To begin,let us look at the memory requirements of model checKiige depth-first search algorithm, dis-
cussed in part Ibf these notes, constructs a set of stafeschstate in the intersection of the property
automaton and the interleaving product of the component autasmatared in astatespace. Sincethe
model checking problem for all practical purpogeseduced to the solution of a reachability problem, all
the model checker does is to construct states awstidok whether they were previously visited or new.
The performance of a model checker is determined by how fast we can do this.

The statespace structure serves to preventteploration of previously visited states during the search: it
turns what would otherwise be an exponerdigbrithm into a linear one, that visits every reachable state

in the graph at most onc&.o enable fast lookup of states, the states are normally stored in a hash-table, as
illustrated in Figure 13.

L L

Li nked Li st

S @

L

h-1

Fig. 13 — Sandard Hash Table Lookup.

Assume we have a hash-table witklots. Eactslot contains a list of zero or more stat@®.determine in
which list we store a new stadgwe compute a hash-valhash(s), unique tos and randomly chosen in the
range Oh-1. Wecheck the states stored in the list in hash-tabléhafihi(s) for a possible match with If

a match is found, the state was previously viséed need not be explored agalfi.no match is found,
statesis added to the list, and the search continues.

Each state is represented in memory as a sequérigeits. A simple (but poor) hashing method
would be to consider the array of bits as one large unsigned integer,@iculate the remainder of
its division byh, with h a prime number A more efficient method, used in the model che&en,

is to use ahecksum polynomial to compute the hash values. We now choas a power of 2 and use
the polynomial to compute a checksumagf(h) bits. This checksum is then used as the hash value.

Letr be thenumber of states stored in the hash-tablehattg number of slots in that tabl&/henh >>r,
each state can be stored in a different slot, provided that the hash function is of sufficientyaidgd

The listsstored in each slot of the hash-table will either be empty or contain one singleSstdgstorage
has only a constant overhead in this case, carrying virtually no time penalty.

Whenh <r, there will be cases for which the hash function computes the same haslfiovalifferent
states. Theshkash callisions are resolved by placing all states that hash to the same value in a linked list at
the corresponding slot in the hash-tabla.this case we may have to do multiple stadenparisons for

each new statihat is checked against the hash-table: towards the end of the search onrdteragpar-

isons will be required per state. The overhead incurred increases lineartyravitimgr/h, once the num-

ber of stored statesexceedd.

Clearly, we would like to be ithe situation wheré >>r. In this case, a hash-value uniquely identifies a
state, with low probability of collision. The only information that is contained irh#s#-table is now pri-
marily whether or not the state that corresponds to the hashheaduseen visitedThis is one single bit of
information. Arash proposal is now to indeed store only this one bit of information, insteadSifithef

the state itself.Thisleads to the following trade-offs.

Given m bits of memory to store the hash-talfidhits of data in each state descriptorgachable states,
and a hash-table with slots. Clearly, fewer tham/S states will fit in memory, since the hash-table itself
will also take some memory. Hf>m/S the searchwill exhaust the available resources (and stop) after
exploring afraction ofm/(r.S) of the statespace. Typical values for these parametens ark0®, S=10°,
andr =107, which gives a ration/(r.S)=10"2, or a coverage of the problem size of only 1%.

If we configure the hash-table as an arody8.m bits, using it as a hash-table whh=8.m 1-bit slots, we

now haveh >>r, since 810°>>10", which should give us an expected coverage dosE0%. When,

with low probability, a hash-collision happens, our model checking algorithnecevitlude incorrectly that

a state that was visited before, and it will skiplitmaynow miss other states that can only be reached via

a path inthe reachability graph that passes through this sfidtes, therefore, would lead to loss of cover-

age, but itcannot lead to false error reports. We will see below that in almost all cases where this method
would be usedi.e., when normal state storage is impossible due to limited resources available) coverage
will increase far more due to the increased capacity to store states than it is reduced due to hash collisions.

This storage discipline was referred to by former Bell Labs colleague Robert Morris in 1968 as follows:

“A curious possible use of virtual scatter tables arises whéash address can be computed with
more than about three times as many bits as are actually neededalculated address. The possi-
bility that two different keyshave the same virtual hash address becomes so remote that the keys
might notneed to be examined at alf. a new key has the same virtual hash address as an existing
entry, then the keys could be assumed to be the Sdma, of course, there is no longer any need to
keep the keydén the entry; unless they are needed for some other purpose, they can just be thrown
away. Typically,years couldgo by without encountering two keys in the same program with the
same virtual addres€f course, one would hate be quite certain that the hash addresses were uni-
formly spread over the available addresses.

No one, to the author's knowledge, has ever implemented this idea, and if anyone has, he might well
not admit it.” [M68]

To reduce the probability afollision, we can use multiple independent hash-functions, and set more than
one bit per state. Using more bits can increase the precision but reduce the nusmbéaloi® slots in the
bit hash-table.Thetrade-offs are delicate and deserve a more careful study.

3.6. Bloom filters

The method we have described wast proposed for use in a verification tool in [H88}. is closely
related to a method known as a Bloom Filter, described by Burton Bloom in 1970 [B70].

Let againm be the size of the hash-table in bitss the number of states stored, &ttie number of hash-
functions used(Thatis, we store bits for each state stored, with each ofkiui-positions computed with
an independent hash-function that usessthigs of the state descriptor as the key.)

Initially the hash-table will contain only zero bit8vhenr states have been stored, the probabiligt any
one specific bit is still 0 will be:

0 lj(.r

m-10

o Mo

The probability of a hash-collision on the«1)ststate entered would then be

e
EII]‘ D].——D g E[Il —kr/mg(
D

which givesus an upper-bound for the probability of hash-collisions on ther fatsttes entered. (E.g., the
probability of a hash-collision is trivially O for the firstate entered.Jhe probability of hash-collisions is
minimized for the value df=log(2).m/r, which gives

O, O

0.0 = 0.6183""

020

Form=10° andr =10 this gives us an upper-bound on girebability of collision in the order 16, for
a value ok =89.315.

1.0— — 100
0.75- —80
Probabll_lty of —60 Solid: Computed
hash-collisions :
] : 0.50— Optimal Number of
Dashed: Optimal k 40 hash-functions (k)
Dotted: k=2 B
0.25— 20
0.0 L1
I I I
0 50 100
Memory bits divided by Number of States (m/r)
1.0— — 100
0.75- —80
Probability of e —60 Solid: Computed
hash-collisions N .
] : 0.50— N Optimal Number of
Dashed: Optimal k ¥ 40 hash-functions (k)
Dotted: k=2 A B
0.25—
0.0—

Memory bits divided by Number of States (m/r)
Detail

Fig. 14 — Optimal Number of Hash-Functions and Probability of Hash-Collision.

Figure 14 illustrates these dependencies.

In practicek must bean integer (e.g., 90)ln a well-tuned model checker, the runtime requirements of the
search depenltinearly onk: computing hash-values is the single most expensive operation that the model
checker must performThelarger the value df, therefore, the longer the search for errors will takethe

model checkeBpin, for instance, a run witk =90 would take approximately 45 times longer than a run
with k=2. Although time is a more flexible commaodity tharemory, the difference is significanThe
guestion is then how much quality we sacrificee select a smaller than optimal valueofThetrade-off

is illustrated in Figure 14.

For the suboptimal value=2, the value used in the model chec®&pin [H97], the upper-bound on the
collision probability becomes #0™4, which reduces the expected coverage ofstrch from 100% to
near 99%, still two orders of magnitude greater than realizexd imsh-table lookup method for this case.
We can also see in Figure 14 that the hashing method starts gettimglizdag form/rratios over 100. To

be compatible with traditional storage methods, theans that for state descriptors of less than 100 bits
(about 12 bytes) this method is not competitire practice, state descriptors exceed this lower-bound by a
significant margin (one or two orders of magnitude).

An interesting variant of this strategy was proposed in [W&3]J, namedhash-compactn this case we try

to increase the size affar beyondwhat would be available on a normal machine, e.g%tdi#s. Wenow
compute a single hash-value within the range #-13, as a 64-bit number, and store this nunibex reg-

ular hash-table, as shown in Figure 13stead of states. We have k=1 in this case, effectively
m=2% B 10'. For the value ofr =10" we then get a probability of collision near 26, giving an
expected coverage of 100%0 store10’ 64-bit numbers takes less thar=10° bits, so also this method
works. The maximum valuef r for which we could get the superior performance of the hash-compact
method is of coursm/r.

Both the hash-compact method and double-bit hashing have been implem&pied[i#97].) A measure-
ment of the performance of these two methods for a fixed problenr si427,567and the amount of
available memorynvarying from 0 taom>r. Sis shown in Figure 15, which is taken from [H98].

100%—| e
Measured '
Coverage 759/
in percent
50%—| k=2 :
25%
. . - / -y
0%_| o traditional

[[[[
215 220 225 230

Maximum Amount of Available Memory m in Bits

Fig. 15 — Measured Coverage of Hash-Compact (hc) and Double Bitstate
Hashing (k=2), for varying m, and fixed r=427567 states and S=1376 bits.

When sufficient memory is available, traditional state storage is prefaBeruing this, if sufficient mem-

ory is available for the hash-compact methiben this is the preferred method. Beyond that the double-bit
hashing method is superiofhelatter method, for instance, still achieves a problem coverage of 50% when
only 0.1% of the memory resources required for a full traditional search are available.

The coverage of both the hash-compact theddouble-bit hashing method can be increased further by per-
forming multiple searches, each time with an independenbfskash-functions [H98].If each search

misses a fractiop of the state spacejndependent searches could reduce thjs taThoughexpensive in
runtime, this gives us a capability to increase the quality of a verification under adverse constraints.

4. Model extraction

The most powerful tool we have in our arsefmalthe verification of software applications is abstraction.

By capturing theessence of a design in a mathematical model, we can often demonstrate that the design
must have certain inevitable propertiéhe very purpose of a model is to enable prdbit fails to do so,

with the tools that are available to the prover, the model should be considered inadequate.

We could stophere, and merely illustrate the point by presenting some examples of poorly constructed and
well-constructed models [H98b], sketching the types of abstratgidmiques that are useful in building
verifiable models of software application¥hereare some problems with this approach thou§irst,

finding the right abstraction can be haid.takes timeto develop the insight that is needed to capture the
essence of a software desinthe proper level of abstractioMore often than not, one only realizes what

the proper level of abstraction was some time aftegrdication attempt is completedsoftwareprojects,
especially in industry, face strict deadlines, leawitip room for reflection or detailed consultation with
software designersA hurried, and inadequate choice of an abstraction can trigger long an frustrating bat-
tles with run-away complexity. Worse, the choicenfinvalid abstraction can give a false sense of security

by causing the verifier to miss design errors alltogether.

An alternative method, that vahall explore here, is to use abstraction techniques in a systematic manner to
extract verification models mechanically from software artifacts (source cédeqn example, wavill
consider programs written in a relatively low-level imperative programri@anguage such as Clhe

model extraction process then proceed®ur steps: parsing, interpretation and abstraction, simplification,
and finally conversion into the format accepted by the model checker.

Parsing.
The program source text is converted into a finite automaton stryetaceknown as eontrol flow
graph, a parse tree or anabstract syntax tree). The states in the automaton are the confi@lv
points of the program, anithe transitions are labeled with the declarations, conditions, beasit
statements frorthe program textThefinite automaton structure is constructed such that it preserves
all information necessary to reconstruct the original program source text, no more and no less.

Interpretation and Abstraction.
The program is now in a standard form where abstraction techniques cappbed, e.g.,
[AL91],[CGL94]. We can also applyrogram slicing techniques [T95],[CDO00], with the slice crite-
ria derived from the program properties to be prov8tcing algorithms allow us to construct the
smallest progranfragment that preserves all access to all data objects mentioned in the properties,
and all entries to an exits from the corresponding program locatidescanalso postpone slicing
until after a base model has been generfitad the program source, and use model-based slicing
techniques, e.g., as supported in 8pén model checker (version 3.4.0 and latevye will discuss
these and other types of abstraction in more detail below.

Simplification.
Next, the abstracted program can be simplified and, optionally, optimized by using steutkard
nigues used in compiler constructiomhis includes rewriting, dead variabéimination, dead code
elimination, constant propagation, loop unfolding etc.

Conversion.
The final step is to translate the abstracted and simplified program modgldrgpntax of the model
checker used, and to write it out. This stage is simildhedfinal code-generation phase of a com-
piler, but since the target is high-level, rather than low-level code, thésstefatively straightfor-
ward here.We can benefit from the fact that the control flow of the applicasomsually trivial to
convert from one format into another, asichple abstraction techniques can be used to bridge any
syntactic gap between the source implementation language and the target modeling language.

The main types of abstraction can be used in the model extraction process are as follows.

m] Sicing [T95] can be used to reduce a program source to a smaller fragrilemter complexity, that
contains onlypart of its functionality.Theslice point can be given as a reference to a a specific set of

data objects, e.dhe data objects that are referred to in the property to be proven or in a particular
statement of interest. All code that is directly relevanh&imanipulation of these data objects is pre-
served in the slice and the rest is hidden. Slicing algorithms are based on data and control depen-
dency analysis of the program texithe objective of the slicing algorithms is to identify those parts

of the program that are irrelevant with respecthe properties to be proven. Since all properties of
interest are necessarily preserved under this abstraction we can guarantee that if the original program
can violate a property of interest, then so can the sliced version and vice Revparty-basedlic-

ing has the desirable characteristicdbeing both sound and complete; it permits neither false nega-
tives nor false positives durirtge final verification. As we shall see, this is not necessarily true for
other abstraction and reduction techniques.

m] Predicate Abstraction [GS97], [DDP99] andMapping [CGL94], can beused to reduce the value
ranges of data objects, e.g., frameger to Boolean values. If, for instance, the correctness property
requires us to determiria specific timer is running or not, but does not require knowledge of it's
precise value, then we can map the integer data object that holds the timé¢o waB@olean object,
with an appropriate mapping function. We can use the assistance of a tipgovemor of special-
ized decision procedures to prove thetppings are applied consistently, and together define a sound
abstraction. Irgeneral, this type of abstractican guarantee that if the program allows a property
violation then sawill the model, but not necessarily vice versa: it is sound (cannot produce false posi-
tives) but not necessarily compldiie may produce false negativesh false negative is counter-
example that shows that a property can be violated in the abstract model, thabeaeconstructed
for the concrete modelt means that information was lost in the abstract that turns out to be relevant
for distinguishing incorredrom correct runs.In most cases the counter-example contains sufficient
information to allow the user to remove tfase negative by revising the abstraction that was
applied.

m] Generalization is a method by which we introduce non-determinism to remove irrelevant detail from
a model. The generalization is defined in such a thay the number of runs of the system of the
whole strictly increasesThe system can still perforrall the executionshat it could before the gen-
eralization was applied, but it nopermits also additional executionéind execution that violates
the property mustherefore still be present, so the method is sodrekadded executions, however,
could themselves violate the property, and thereby introduce false negativéi&e predicate
abstraction, this method is not necessarily compléte.exampleof generalization is to replace a
process with a random demon that can generate all extewisibile events that the original process
can generate non-deterministicall{E.g.,to model a subscriber in a telephone system witkraon
that randomly generates on-hook, off-hook, and digit events.)

m] Restriction can be used to restrict the scope of the verificationsiabaet of the problem. We can for
instance restrict the capacity of buffers, the nunobective processes, the dimensions of arrays, etc.
In general, there will be no guarantee that essential correctness propertEeserved under these
abstractions. In formakrms, this abstraction method is neither sound nor complete: it can introduce
both false negatives arfdlse positives. Nonetheless, the method can be useful in an exploratory
phase of a verification effort, to study problem variants yihsibly lower complexity than the full
problem that is to be solved.

We next discuss three main types of abstraction methods in more detail below: prograndehdlicing,
predicate abstraction, and tabled abstraction [HS99a],[HS99b].

5. Program and model dlicing

As an example we will considarsimple wordcount program, written in Promela, the input language of the
Spin model checker.The program receives characters, encoded as integers, over the chdinneland
simply counts the number of newlines, characters, and white-space separated words, empdtoféiie
marker which is encoded as the numider

If we wish to verify that this program maintains the invar@aifihc = nl), thenclearly all manipulation of

the variablesww andinword are irrelevant.In a first step of a slicing algorithm, only the variables and

nl are marked agelevant. Thesetwo variable become the slice criteria for deriving a reduced model that
will suffice to prove, or as we shall discover disprove, the property.

The slicingalgorithm now performs a data-flow analysis, marking all statements where the relevant vari-
ables are either used (i.e., read) or defified, assigned a valueYhesestatements appear on lines 11 and
12. Next,we perform a control-dependency analysis for each of the three cumeantked statements.
The marked statements arentrol-dependenbn every statement in the modkeht can affect their execu-
tion (e.g., preventing it bplocking). For our wordcount program this applies to the conditionals=
\n” online 11, and¢ == -1 on line 10. Note, for instance, that if the latter condition evaluatese,
the relevant statements cannot be reached. These two conditionals are now marked as relevant.
1 chan stdin=[1] of {int};
int ¢, nl, nw, nc;
bool inword = false;

{ /¥ count number of lines, words, and chars received */

2

3

4

5 active proctype wordcount()
6

7 do

8

stdin?c ->
9 if
. c==-1->break /* end of input */
11 o c=="\n"->nc++; nl++
12 1 else ->nc++
13 fi;
14 if
15 Doc=""|lc="\t'||c="\n" ->
16 inword = false
17 ;o else ->
18 if
19 : linword ->
20 nw++; inword = true
21 :» else /* do nothing */
22 fi
23 fi
24 od;
25 printf("%d\t%d\t%d\n", nl, nw, nc)
26}

The data-objects referred to in the newly marked statements become data-dependeptapettye and

we repeat theontrol dependency analysitn the second phase we now discover the input statement on
line 8 as both data-dependent (it assigned a value tathedependent variabdg and control-dependent

(if it blocks, none of the other relevant statements can be reachieid)marks the channealdin as data
dependent. Weontinuethis process of performing alternately a data dependency analysis and a control
dependency analysis until a fixedpoint is reached.

In the final slice, the program fragment on lines 14-23, and the one statement on line 25 isasarkeésl
vant to the proof of the invariant property. Note for instance that even thoughatbments on line 15
refers to the relevant variabde it cannot change the value of that variable, and thergfomerly remains
outside the slice.

We can now perform model checking on the reduced model. Before we can do so, howeves} wlese

the modelto its environment.Thatis, we must encapsulate inside the model all the essential assumptions
that have to be made about external processes thatdbess considered can interact with. These assump-
tions are essential for the proof to be performidthe case of the wordcount program we must formalize
our assumptions about the external source of the characters that aredoitegl. Using a generalization
technique, we can think of a first approximatiminan external process that sends randomly selected sym-
bols from the ASCII character set, plus the specially designated end-of-input marker.

We can do bettethough, by applying another simple form of abstractiinve collect all the uses of the

input variablec in the (remaining) text of the wordcount program we see that only three ranges of values of
the variable are of interest: (1) newlines, €)d-of-input markers, and (3) any other symhblsuffices
therefore to restrict the input stream to just three abstract symbols, representing the three relevant value
ranges. Théollowing environment definition suffices for the sliced model.

#define newline \n’
#define eof -1
#define anythingelse 0

active proctype input()

{
do

. stdin!newline
.2 stdin'eof
. stdinlanythingelse
od
}

Note that forthe non-sliced program, we would have had to add two extra symbols, for space and tab, to
capture the close the system to its environm&ée cannow combine this with the sliced model derived
before, to complete the verification model.

chan stdin = [1] of {iint };
int ¢, nl, nc;

active proctype wordcount()
/* sound and complete slice for o (nc = nl)*

{
do

.2 stdin?c ->
if
:: ¢ == eof -> break
2 ¢ == newline -> nc++; nl++
i else -> nc++
fi

od

}

If we perform the verification ofhe invariant (nc = nl), we discover that this property can be violated.
Because we have only performed sound and complas&ractions, this is necessarily a valid counter-
example and cannot be a false negative.

The counter-example shows that when the value of variabeps around its maximal value (exceeding
the range ofnt) it can become smaller thahe value ohl : an obvious consequence of the fact that all
value ranges are necessarily finitk.is not a problem we are likely to run into in practice, except for
exceedingly large inputs.

5.1. Slicing algorithm

We will describe the core of the slicing algorithm tigatncluded in theSpin model checker.For model
checking applications the slicing algorithm has to be slightly different fhemraditional methods, as for
instance describeith [T95]. We cannot, for instance, safely remove a cyclic component from the control-
flow graph, everif each individual statement in such a cycle is independent of the property to be proven.
Removal of such a cyclic componembuld require a proof of termination, which in general cannot be done
by static analysisObservethat absence of terminatiamould affect the liveness properties of a program.
Our approach to slicingherefore, proceeds in three phases. In the first phase, we identify all statements
that are relevant to the property to be proventhe second phase, all non-relevstatements are replaced

by the null-statemerskip, but the structure of the control-flow graph is not modified.

Only in the lastphase of the slicing algorithm do we simplify the control-flow graph, while taking care to
preserve all liveness propertie. non-cyclic subgraph in the control-flograph consisting only akip
statements, for instance, candmlapsed down to a single statement, as illustrated in Figur&ldtthat
cycles are preserved under this transformation.

We will now look at theslicing algorithm that was implementedSpin Version 3.4.0 in more detailThe

input language foBpin defines three basic types of objects: processes,dochgjlobal variables, and mes-
sage channelsProcessegan interact via synchronous or asynchronous message passing, or via unre-
stricted access to globahriables. In particular, there are no pointers or recursive functionSpim

skip

Fig. 16 — Simplification of the Control-Flow Graph After Slicing.

verification models: the two features that can complicate the design of a slicing algorithigefoeral pur-
pose programming languag@ssumethe following input to the slicing algorithm.

S is the set of all basic statements in the program (like assignments, conditions, send operations,
receive operations, process instantiations, etc.). The set of basic statements is identical ¢ the set
labels on the transitions in the control-flow graph of the program considered.

B is the subset of S that contains all basic statements that can block, that is atdatesents of
which the execution is conditional on the system st@tee executionof an assignment statement,
for instance, is always unconditional. Téeecution of a receive operation on message chamnel
is conditional on the non-emptynessof

T(s, t)oras we shall writs (>t , is a function on the elements $that returns true if and only state-
mentt is reachabldrom statemens$ within the control flow graph of the program.sifandt are
statements from different processes, théfr t will always be false.

is the set of all local and global data objects in the program.

C is a subset db that contains all pending slice criteri@heinitial contents ofCis derived from the
program propertiethat are to be proven: each data object that is referred to in at least one property
becomes a slice criterion.

P is a subset db that contains all processed slice criteria. This set is initially empty.

Def (s) with sS. Def ('s) contains all those elements@that aredefined(i.e., can be assigned a new
value) in statemerg.

Use(s)withsOS. Use(s) contains all those elements@that areused(i.e., evaluated) in statemest

The objective of the slicinglgorithm is to compute a st which is the subset & that contains all state-
ments inS that are relevant with respect to the initial set of slice criteria, and hence relevantaafiba-
tion of the property.All statements if5\R can be replaced by a null operatiskip in the model without
altering the outcome of a verification attempt in any way.

In the description of the algorithm below we will use the following three operations on sets.
Enpt y(x) is a boolean function that returns trueif sé empty, and otherwise false.

Get (x) removes an element from setind returns it as the result of the operation. And finally,
Put (y, x) adds element into the sey.

Initially, setP is empty. Thealgorithm computethe set of statements that must be contained in the slice in
setR.

w)

while (!Empty(C))

d = Get(C); # start processing slice criterion d

Put(P, d); # mark it as processed

X={s]|s 0 s Od O Def(s)}

R=R 0O X # add data dependent statements
U={u] Os,s OXOuDOUsess) ODuld P OC)}
c=C OU # add new slice criteria

Z ={s|s OBOOtLt OX0Os D>t}

W={u| Os,s 0O Z Ou O Use(s)}

c=C OW # add control-dependencies

}

Termination Thealgorithm presented above will terminate. Fobserve that foBpin models input seD

is guaranteed to be finitdn each cycle of the algorithm precisely one element fset® moves to seP,
and only elements from sBtthat are not already contained in eitlsor P can be added as new elements
to C. In maximally [(DOiterations of the algorithm, then, all elementokill be present irP and nofur-
ther elements cabe added t&C. SinceC shrinks by one element in each iteration, Getill reduce to
empty within a finite number of iterations, at which point the algorithm termioates.

There are two special cases that must be dealt when the algorithm is implementedi ésgn &gin Ver-
sion 3.4.0. Thefirst is that without precautions the control-dependency analysis woutlabbsrict. For
the computation of set we can exclude statements from consideration if those statements arebjpgrt of
ble in the control-flow graph A bubbleis a subgraph of theontrol-flow graph that satisfies the following
three conditions.

. The subgraptihas one unique entry poiatand one unique exit poimt, both elements of sS& no
statement inside the subgraph can be reached other than by plassigde, and no statement out-
side the subgraph can be reached other than by passing tkrough

. All decisiondn the subgraph are non-blockind-his means that either all statements in the subgraph
are either non-blocking, or the immediatpheceding statements in the control-flow graph also have
else as one of their successors.

. The subgraph contains no single statement that is currently containe®in set

The subgraph defined by the program fragment from lines 14-23 wdtdcount example at the start of
this section satisfies these three conditions, and therefore need not add any control dependencies.

Bubblesubgraphs can be found by computthg dominators for each node in the control-flow graph, cf.
[ASU86]. Thedominators are computed twice: once for the control-flow graph as given and once for the
same graph with the direction of all edges reversed.

The second special case has to do with the use of chan@ginimodels. Thejuestion has to do with the
initial computation of the set3ef andUse§ for each statement i. Considerthe simple send
and receive statements:

sk qllw
s2 q2?v

Statemengl sends the value of variableover channetfl , and statemer® receives a value from chan-
nel® and assigns it to variable Wemust have

Def(sl) ={}

Use(sl) ={w, ql}
Def(s2) ={v}

Use(s2) ={ 2,02}

What should be the missing entrylise&) ? Clearly,the value assigned to the variakleame from
somewhere. I anddl refer to the same channel object, then we can fill in:

Use(s2) ={ w g2}

In Spin models there are only three ways in which a channel name can be aliased: by assignmesy, by
sage passing (channels can be passed as parameters itiranghls), and by process instantiation (by
passing a channel object as a parameter to the newly created process).

This means that it is relatively straightforward to perforohannel alias analysis that associates with each
channel object all instantiated channels that the object could pointaaetermine,then, which data
objects musbe entered into the definition dlse(s2), we inspect the alias list @2, and locate all
statements in thmodel that can perform send operations on the channels that appear in tiAB hstri-
ables used as parameters in these send operationapfiear in theitJse definitions, are now added to
Use(s2). Forthe examplewith g1 andg2 pointing to the same channel, this identifieas the miss-

ing element, as intended.

6. Predicate abstraction

Another well-understood abstraction technique is predicate abstraction [GS97],[DDP &8} instancejn

the property we are interested in the sign afata object, but not in it's absolute value, we can replace
every occurrence of this data object with a new variable that captures only itewgigmt its value.For
example, if the property is:

O((x<0) - 0(x=0))
and the program contains statements such as
x=0;
X++;
and conditional such as
(x>5)
I(x>5)

we can replace all occurrences of the varialwéth a new boolean variableeg_x. Theproperty is rewrit-
ten as:

o((neg_x) - ¢(~neg x))

the assignments and conditions are now mapped as shown in Table IND&xig to indicate anon-
deterministic choice cd or b.

Table 1 — Predicate Abstraction.

Concrete U Abstract
O neg x 0 - neg x
x=0; Oneg_x = false; E'skip;
X++; Dneg_x = ND(true, false); [skip;
(x>5) pfalse HND(true, false);

Under the abstraction, precise information about the value of varableplaced with non-deterministic
guesses about the possible new values of the booéggar. Forinstancewhenneg_x is currentlytrue,
and the value ok is incremented, the new valuetould beeither positive or remain negative. This is
reflected in a non-deterministic choicethe assignment of eithémue or false to neg_x. If, however x is
known tobe non-negative, it will remain so after the increment, and the vaheg of remainsfalse in this
case.

Given a data object with domain V. CHlIthe function thamaps values from the concrete domain V to an
abstract domain A, i.elJvOV, M(v)JA. A requirement on the validity of the abstraction is that we can
define a reverse function R that lifts abstract values back into the concrete domain, in such a way that
[CWO00],[CC76],[DGGIT7]:

OvOv, vOR(M(v)) O OmOA, m=M(R(m))
i.e., such tha andA form a Galois connectionTherelations are illustrated in Figure 17.
M(R(m
RM)

v A v
R(M(V)) m

M(v) R(m)
Fig. 17 — Abstraction and Concretization.

These relations hold for the sample abstraction mappingtiermteger variablg to the boolean variable
neg_x. NotethatR(M(v))is a set. Depending on the original value of v, this set includes either all values
v=0 or all values %0, as intended.

Predicate abstractions can in some cases be computed mechdaicadhtricted types of statements and
conditions, e.g., when we restrict to Pressburger arithmetic. In this case, one aanagt®nized decision
procedure for the necessary computations, e.g. the Stanford Validity Checker SVCIfL§8heral, espe-
cially for applications written in unrestricted C, a manuaicess to define the abstractions seems unavoid-
able. Thideads to the next method, calkadbled abstraction.

6.1. Tabled abstraction

Once a program is parsed, all control-flow constrhetge been interpreted and what remains are only the
basic statements and conditions from the source langu&fgecan sort this list, remove duplicates)d

place the entries into a tableoreachentry into the table we can now define an translation from the source
language to the target modeling languag@ée translation allows us to specify simple syntactical conver-
sions but also higher-level abstractions. The table can be filled in to a large extent with auteoiated
nigues, e.g. slicing and predicate abstractions based grdperty to be provenlt seems unavoidable,
though, that some of the abstractions that are currently beyond the reach of automated techniquls have to
provided manually.

This tabled abstraction method htae advantage that it is intuitive, and imposes minimal overhead on the
verifier (both the human and the mechanized versiolig)llows us to applyll abstraction techniques in
our toolset, including manuallghosen generalization and restriction techniquess relatively easy to
keep an abstraction table up to date, as the source program thatsisbject of verification evolveA
model extractor can track the evolving source mostly automatically, alertingséeonly to changes that
cannot be handled mechanically (e.g., extensions of functionality in the source).

6.2. Abstraction rules

Each entry into the abstraction table contaiteftshand side entry with a canonicalized representation of a
basic statement or conditional expression from the source téxe afpplication, and a right-hand side that
specifies its desired interpretation in the abstract mobtemany cases, a pre-defined interpretation, or
mapping, can be applied by the model extract&implepredefined typesf rules for either hiding or liter-
ally preserving specific types of statements from the program source are listed in Table 2.

Table 2 — Predefined Mappings.

Type Meaning

print Embed source statement into a print action in the model
comment Include in the model as a comment only

hide Do not represent in the model

keep Preserve in the model, subject to global Substitute rules

A mapping toprint, for instance, signifies that wean abstract from the source statement, but that we still
are interested in seeing a witneddts appearance in the run of a model (e.g., in simulation runs or when
reproducing error trails)A mapping tacomment preserves the sourt¢ext of the statement as a comment

in the model, but without any semantic8. mapping tohide strips the statement completely from the
model.

An example of an abstraction table with three of these mapplag, plus two globabubstitute rules, is
shown as Table 3.

Table 3 — A Sample Abstraction Table.

Substitute FALSE Ofalse
Substitute BOOL Ebit

D: int pData:GetDataPointer()Ehide
D: BOOL m bConnected Okeep
A: *((int *)pData)=(int)nStatus Uprint
A: m_bConnected=FALSE erep

Declarations from the source text are prefixed (by the model extractorawitsignation "D:" and assign-
ments are prefixed with "A:"Assumethat it can be determined that the use of varipblata is irrelevant

to the property to be proveWe suppress the variabtieclaration in the verification model with a mapping

to hide, but can nonetheless preserve visibility of access to the variable by mapping all assignments to
print. Theprint mapping means that whenever this statement is encouieredrification model will not
execute but print the source text of the statement.

If a particular statement does not appear indib&raction table the model extractor applies a default map-
ping rule, which can be chosen by the udeor assignmentsthe default rule could bgrint, and in that
case the above entry can be omitted fromatb&traction tableThe user can specify a default mapping for
each basic type of statement (e.g., declarations, assignments, function calls, conditions).

All branch conditions, e.g. those used in iteration and selection statements to effect control flow, are entered
twice into the abstraction table by the modefractor: once in the form found in the source text, and once
in negated form.Thereason for this apparent redundancy is that in the abst@d®l we have the option
of mappingboth versions tarue, and thus introduce non-determinis@onsider for instance, the follow-
ing case:
C: (devicebusy(x>line)) true
C: I(device busy(x=line)) true

The precise determination if a given device is idle or busy is considered to be tiey@adpe of the veri-
fication here. For verification purposes it suffices to state that both cases can occur, and the results of the
verification should holdho matter what the outcome of the call s.a similar vain, though, we can use a
mapping tdfalse as a constraint, to restrict the verification attempt to just one case:

F: (devicebusy(x>line)) true
F: !(device busy(x>line)) false

Here the verification would check correct operation of the system when the device polled is always busy.

6.3. Explicit mapping

In some cases, the predefined interpretations from Table 2 are not adequate to cover thecd@euiics
fication. For the applications of model extraction that we have considered so fapplésl to fewer than
20% of the entries in an abstraction tabléefollowing example illustrates a typical use.

F: m pMon->SendEvent(desld,etype) destqgletype

Here the sending of a message is preserved in the verificatidel, much like &eep, after by casting it
into a specific, standardized, formatdote that within a programming languatge send statement can take

any form whatsoever, since there is no generally accepted standard librasycForoperations.The
abstraction table here serves to standardize the format for these types of statements, without impeding the
freedom of the programmer to chose an arbitrary representation.

How a particular program statemesttould be abstracted in the model can also depend on the data objects
that are used in thatatement. The tabled abstraction method allows us to identify the data objects that
should be consideregtlevant to the verification and those that can be elided without harm. A statement
that refers to an irrelevant data object will then be hidden from the verification model.

If no explicit mapping is defined and no data restrictiapgly, then the model extractor will apply a set of
default type rules to define the conversfoom program to modelEachsource fragment is classified as
one of four types: an assignment (A), a condition é3Jgeclaration (D), or a function call (Flror each of
these types the model extractor has a default abstraction rule, based on the entries from Table 2.

6.4. Abbreviations

The abstraction table is generally much smaller than the program text from which it is demveder can
shorten it still further by exploiting some features of the model extractor. First, any enmaihtdins it's
default mapping can be omittédm a user-maintained table: the model extractor can fill in these missing
entries as needed. Second, the user can use patterns to assign tmespimg to larger groups of entries
that match the pattef-or instance, suppose that all callsthe C library-functionsmentpy andst r cpy

are to be hidden. We can avoid having to list all different calls by using ellipses, as follows:

F: memcpy(... hide
F: strepy(... hide

This method could be expanded into a more gempatiéérn matching method based on regular expressions.
The above prefix match, however, suffices to cover most cases encountered in practice.

The second method for introducing abbreviations useStihstitute rule that was shown earlieSubsti-
tute rules take effeainly on mappings of typkeep, and they are applied in the order in which they are
defined in the abstraction table.

6.5. Example

The tabled abstraction method was first described in [HS99a], [HS99b] and used at Béil pahee the
correctness of theall processing software for a new commercial switching sysWhetll illustrate the use

of the tabled abstraction method here with a much smaller example: an implementation in ANSI-C [KR88]
of the well-known alternating bit protocol from [BSW69The source text for this program is shown
below.

#i ncl ude <stdio. h>

/*
* Cversion of alternating bit protocol
*/

typedef char uchar;

typedef struct Buffer {
int size; /* current size of buffer */
uchar *cont; /* buffer contents */

} Buffer;

extern int get_data(Buffer *);
extern int put_data(Buffer *);

int

abp_sender(int N)

{ Buffer Bufinp, Bufout;
short s, S=0, cnt=0;

Bufout.size = 1;
Bufout.cont = "M";
while (get_data(&Bufout))
{ cnt++;
send(&Bufout, S);
if ('recv(&Bufinp, &s))
break;
if s==9S)
S=1-S;
}

return cnt;

}

int

abp_receiver(void)

{ Buffer Bufinp, Bufout;
short S, E=0, cnt=0;

Bufout.size = 1;
Bufout.cont = "A";
while (recv(&Bufinp, &s))
{ cnt++;

send(&Bufout, s);

if (s==FE)

{ E =1-E;

if (put_data(&Bufinp))
break;

} }

return cnt;

}

The program defines the behavior of the sender and the receiver in the prowoah it, one can instanti-
ate two independent processes (asynchronous threads of execution): onetprezessite the sender’'s
code and one process to execute the receiver’'s codeedtemmal routines are assumed to be available in
the execution environment. The functiget _data() is used at theender side to obtain data to be trans-
mitted, and thdunction put_data() is used to deliver data to its ultimate destination at the receiver.
The details of the code are of less interest here than the process of convéntm@n abstract model,
guided by a user defined abstraction table.

Using the program as input, we can extract a verification modgdims input language (Promelajith a

model extraction tool Thetool we uses the Bell Labs Automata Extractor for C code cahed Thetool

can generate a defaabstraction table, that can be based on slicing and predicate abstraction techniques.
The abstraction is conservativethre sense that language constructs that cannot be handled are generalized.
For instance conditional tests on data objects that cannot be represented in the specification latiguage of
model checker (e.g., pointers) are non-deterministically magupthet valuesrue andfalse. Thetable can

be adjusted manually for more targeted model extraction.

The two parts of the model of the alternatinit) protocol, one part for the sender and one part for the
receiver, are extracted separately as follows.

$ ax -a abp_receiver abp.c
$ ax -a abp_sender abp.c

The two parts of the model are extracteth the filesabp_receiver.spn andabp_sender.spn

and the two default abstraction tables are written into the filabp_receiver.lut and
abp_sender.lut . Thetables we will use are shown in Figures 18 and 19.

The model extractor classifiatatements as a declaration (prefix "D:"), a condition (prefix "C:"), an assign-
ment (prefix "A:"), afunction call (prefix "F:"), a return statement (prefix "R:"), or an expression (prefix

D: Buffer Bufinp,Bufout; keep /* literal */

D: short s,E=0,cnt=0; keep

A: Bufout.size=1 keep

A: Bufout.cont="A" keep

C: (s==E) keep

C: (s==E) keep

A: E=(1-E) keep

E: cnt++ keep

F: send(&(Bufout),s) sq!Bufout,s I* syntax conversion */
C: recv(&(Bufinp),&(s)) rq?Bufinp,s [* syntax conversion */
C: Irecv(&(Bufinp),&(s)) timeout /* restriction */

C: (put_data(&(Bufinp))) false I* restriction */

C: (put_data(&(Bufinp))) print I* slicing */

R: return cnt hide I* slicing */

Fig. 18 — Abstraction Rules for Receiver.

D: Buffer Bufinp,Bufout; keep *literal */

D: short s,S=0,cnt=0; keep

C: (s==S) keep

C: (s==S) keep

A: S=(1-S) keep

E: cnt++ keep

F: send(&(Bufout),S) rq!Bufout,S I* syntax conversion */
F: recv(&(Bufinp),&(s)) sq?Bufinp,s /¥ syntax conversion */
F: Irecv(&(Bufinp),&(s)) timeout * restriction */

C: (get_data(&(Bufout))) false /* restriction */

C: (get_data(&(Bufout))) print [* slicing */

R: return cnt hide I* slicing */

Fig. 19 — Abstraction Rulesfor Sender.

"E").

The mainrestriction we have defined for this verification attempt is the assumption thatithdata
andget_data functions do not fail. We can abstract from the effect of thefsmctions for almost all
properties of interest of this protocol (the working of the protocol depends only on the sequence numbers,
but not on theactual data that is being transferreBpcauseheget_data is assumed to always succeed,

we restrict to the case where there is an infinite strelamessages from sender to receiver, tempered only

by the flow of acknowledgements in the opposite directibmerecv() statements, therefore, also cannot

fail. We have mapped thesettmeout , but under the given assumptions they could of coals® have

been mapped talse.

The model extraction based on these tables produces the following rElseltwo parts ofthe abstract
Spin model shown in Figure 20 and 21 are generated by the model extr@cicea property is added to
this model, slicing techniqueuld eliminate still more statements, e.g., the manipulation afthevari-
ables in sender aneceiver, and the access to Befout data structure in the receivefhe model is
fairly close to the one that one would construct manually based on the description in [BSW69].

If the source program is revised for any reason, we can reuse the abstraction tables from above to re-extract
a model from the modified coddf new statements were introduced, the model extradgtbadd default
entries for them in the abstraction table and warn the user tifgadupresence, so that they can be adjusted
to conform to the abstraction focus that was chos$kestatements were omittethe model extractor will
comment them out of thabstraction tableFor even significant revisions of the source, taking days for a
programmer to make, an update of the abstraction table to match it to the new versiarodéttypically
takes no morghan a few minutesThe alternative of rebuilding a complete verification model for each
new version of the source progrday hand would more likely approach the investment of time that the pro-
grammer made.

active proctype abp_receiver()
{ Buffer Bufinp,Bufout;
short s, E=0, cnt=0;

Bufout.size = 1
Bufout.cont = A,

do
1 rq?Bufinp,s ->
cnt++;
sq!Bufout,s;
if
i (s==E) ->
E=(1-B);
printf("C: !(!put_data(&(Bufinp)))0)
2 l(s==E)

fi
:: timeout -> break
od

Fig. 20 — Abstract Model for the Receiver.

active proctype abp_sender()
{ Buffer Bufinp, Bufout;
short s, S=0, cnt=0;

do
printf("C: I('get_data(&(Bufout)))0);

cnt++;
rq!Bufout,S;
if
:: sq?Bufinp,s
:: timeout -> break
fi;
if
1 8==S -> S=(1-S)
:else
fi

od

Fig. 21 — Abstract Model for the Sender.

We can inspect the behavior of the abstracted implementation with Spin. First we join the two parts of the
model in a simple Promelawrapper that defines minimal context for the two processes. The wrapper below
defines two abstract channels via which the processes can exchange their messages, and includes the text of
the two processes. The text of thiswrapper, stored in afile called abp, is shown in Figure 22.

mtype = { A, M }; /* acknowledgements and data messages */

typedef Buffer {

int size; I* size of buffer */
mtype data; /* abstracted buffer contents */
h
chan rq = [2] of { Bulffer, bit }; /* data and sequence number */

chan sq = [2] of { Buffer, bit };

#include "abp_receiver.spn”
#include "abp_sender.spn”

Fig. 22 — Context Definition for Alternating Bit Protocol.
Now we can run Spin on this model. First, we can look at the first 20 steps in a simulation run, looking

only at message exchanges:

$ spin -c abp | sed 20q
proc 0 = abp_receiver
proc 1 = abp_sender
C: !('get_data(&(Bufout)))

qgp 0 1
1 rq!o
1 rg?0
2 sglo
2 sq?0
C: !(!put_data(&(Bufinp)))
C: !(lget_data(&(Bufout)))
1 rqll
1 rg?1
2 sg1
2 sq?1
C: !(!put_data(&(Bufinp)))
C: !(lget_data(&(Bufout)))
1 . rqlo
1 rg?0
2 sglo

C: !(Iput_data(&(Bufinp)))

This shows the two processes exchanging the sequemsbers and correctly retrieving and depositing
data during the run. A verification run can be more illuminating, chedkiagystem for possible dead-
locks, and answering any other logical query that the user can formulate about the operation of the system.

$ spin -a abp

$ cc -0 pan pan.c

$ pan

(Spin Version 3.4.0 -- 15 August 2000)

+ Partial Order Reduction

Full statespace search for:

never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)

invalid endstates +

State-vector 36 byte, depth reached 13, errors: 0
14 states, stored
2 states, matched
16 transitions (= stored+matched)
0 atomic steps

hash conflicts: O (resolved)
(max size 2718 states)

1.493 memory usage (Mbyte)

unreached in proctype abp_receiver
(0 of 12 states)

unreached in proctype abp_sender
(0 of 12 states)

The verification run confirms two simple default properties of thiglementation of the alternating bit
protocol, under the stated restrictions: absence of deadimtlabsence of unreachable co@mesthis

prove the protocol correctMNo it does not. To prove that the implemented version transfers messages
without loss and without reordering requiresaistate and prove these more specific properesfice it

to notehere that the implemented version of the protocol discussed her deviates in a subtle way from the
original proposed in [BSW69], and does not have any of these desirable properties.

6.6. Industrial application

Automated model extraction from source code based on slicing, predisstiaction, and the tabled
abstraction method were applied successfully in at leassigndicant industrial project to date: the design
of the call processing software for a new telephone switching system at Lucent Techndlodetailed
description of this project can be found in [HS00].

7. In conclusion

The techniques that are used in practice today to secure the qualitftvedire were developed in the late
sixties and early seventies and have changed little since Tes.is a rather remarkable phenomenon.
Within the same period software applications have changed significantly in size and comfle&ityrg-

est applications of the early seventiesuld be considered relatively small if produced todegr example,

an early version of Unix® from 1973 counted just 6,600 lineS.oTodayeven a wordprocessing applica-

tion is orders of magnitude larger, afak, that matter, the source code for the model chegpigr is about

three times largetoo. Similarly, in the early seventies most applications executed standalone and sequen-
tially, while most applications today execute in a distributed environmentesidhem fully one would

need to consider sets of related and possibly interacting threads of execution.

Despite all these changes, and despite valid critique about the fundamental flawsaafitio@al approach

to testing, these methods are relatively effectiVae best testament of this is that even though almost all
computer controlled devicemd services of today were checked with only these techniques, overall they do
work as advertised. The phone system, for instance, is designetti@getechniques to meet exceptionally
stringent reliability requirements (less than 3 minutes downtime per year per switch).

On theother hand, there is also a slowly growing number of examples of spectacular failures of software
controlled systemsThe examples ar&nown well enough that we need not to repeat them here. (And the
odds are that better examples will occur between the writing of these notes and the tiyoa tiestd

them.)

The reality of industrial software developmenttiat today it is not economically feasible to develop fault-
free products.Softwaretestingcontinues only until theate of discovenfor new software defects drops
below a preset levelAt this point, continuing testingecomes increasingly ineffectivdhe effect is illus-
trated in Figure 23.

Cumulative
Number of
Bugs found

<«— Testing Stops

Time
Fig. 23 — The S-Curve of Test Effectiveness

After an initial startup period, where relatively few bugs are fotimel,testing process starts uncovering
errors at a rate that is proportional to the number of tests performed. At some paate thewhich new
problems are discovered dropshe most likely bugs that are within the range of the tests have now been
found. Evenif the amounof time spent on testing would be doubled, the number of problems found would
increase only marginallyHence,it is no longer cost-effectiveo continue this processlhe bugs with a
lower probability of occurrence, in the givégst suite at least, will remain either dormant or they will be
repaired only when a customer steps on one and reports the prabkeoan expresssk as the product of

the probability of occurrence of an error and the damage that can be causedbyguirance. Clearly, not

all undiscovered software defects carry the same level of Figkire24 illustrates this.

Traditional testing techniques cover ardaand 3 in Figure 24 well: they find the most likely errors in a

software application.Discoveringthe errors in areas 3 and 4astically important to software quality,
while errors in areas 1 and 2 are of little practical interAstasl and 3 are important for the first impres-
sion of qualityby the users of a software product. The errors in area 4, however, contribute to the infrequent
and sometimes spectacular failurad’hen software is usedhfrequently, by a small group of users, the
likelihood of these types of errors occurring remains snidle probability goes up, though, feuccessful
products that are used frequently large numbers of users, which is a relatively recent phenomdman.
ditional testing techniques cannot hope to reach these types of Buithey can reliably be foundith

formal softwareverification techniques of the type we have described in Part IV of these néoetzl
checkers such &pin do not distinguish between likely and unlikely scenaribbsy consider alpossible
scenarios. Thughey perhaps are still over-qualified fibre job. This could be addressed by developing a
new class of reduction techniques that can focus the attention of the model checker exclusively on area 4

Figure 24, considering that tlither areas are either uninteresting or are already sufficiently covered by tra-
ditional techniques.

Damage \ Probability

likely rare

T T

~
harmless | / N !
¢ 1 2
[\\ \\ P

i’ et | e

i T

x o

| o | N

e i “~
catastrophic| ¥ 5 / 4
\ / !
\ / %

e /// 5

Fig. 24 — Risk and Damage.

Changing paradigms

It is perhaps interesting to note that the method we batled in these notes, based on the mechanical
extraction of automata models from software implementations, is the revetse tifeoretically more
attractive method ofop-down stepwise refinement of code, proceeding from an abstract model towards a
concrete implementationThe latter technique, based on prevention rathan detection, is easier to jus-

tify, but has clearly resisted practical adoption so fEne method outlined here proposes a more distant
approach thaimposes no new constraints on the software development process, but merely enables the
designer to detect efficiently when design objectives are jeopardized.

References
[AL91] Abadi, M., Lamport, L., The existence of refinemenappings. Theoretical Computer Science
Vol. 82, No. 2, May 1991, pp. 253-284.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ulimaithe design andnalysis of computer algorithms
Addison-Wesley, 1974.

[ASU86] A.V. Aho, R. Sethi, & J.D. UllmanCompilers - principles, techniqueand tools Addison-
Wesley, 1986, p.671.

[BSW69] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson, A note on relifileduplex transmission
over half-duplex linesgComm. of the ACMWol. 12, No. 5, 260-265, 1969.

[B70] B.H. Bloom, Spacetime trade-ofiis hash coding with allowable error€ommunications of the

ACM, 13(7), July 1970, pp. 422--426.

[Bz83] D.Brand, and P. Zafiropulo, On communicating finite state machioesnal of the ACMVol.
30, No. 2, pp. 323-342.

[CWO00] M. Chechik and W. Dingl.ightweight reasoning about program correctness, CSRG Technical
Report 396, University of Toronto, March 2000.

[CP99] Chint-TsunChou and D. Peled, Formal verification afpartial order reduction technique for
model checkingAutomated Reasoninyol. 23, No. 3, Nov. 1999, pp. 265-298.

[C74] Y. Choueka, Theories of automata on $omega#-tapes: a simplgfgdach,Journal of Com-
puter and System Scienaél. 8, 1974, pp. 117-141.

[CGL94] E.M. Clarke,O. Grumberg, and D.E. Long, Model checking and abstrac#@®M-TOPLAS
Vol. 16, No. 5, Sept. 1994, pp. 1512-1542.

[CD0O0] J.Corbett, M. DwyerJ. Hatcliff, C. Pasareanu, et al., Bandera: Extracting finite-state models
from Java source codBroc. Int. Confon Software Engineerind.imerick, Ireland, June 2000,
to appear.

[CVWY92]C. Courcoubetis, M.Y. VardiP. Wolper, and M. Yannakakis, Memory efficient algorithms for
the verification of temporaproperties,Formal Methods in Systems Desigrfol. 1, 1992, pp.
275-288. Firstpublished in June 1990 iAroc. 2nd Conference oBomputer Aided Verifica-
tion, Rutgers University, New Jersey.

[CC76] P.Cousot and R. Cousot, Static determination of dynamic properties of prodteousCol-
loque sur la ProgrammatiqrApril 1976.

[CM81] P.R.F.Cunha, and T.S.E. Maibaum, $ynchronization calculus for message oriented program-
ming, Proc. Int. Conf. on Distributed SysteniiSEE, 1981, pp. 433-445.

[DGGY97] D.Dams, R. Gerth, and O. Grumberg, Abstiaterpretation of reactive systen#dsCM Trans.
on Programming Languages and Systewd. 2, No. 19, pp. 253-291, March 1997.

[DGV99] M. Daniele, F. Giunchiglia, and M.Y. Vardi, Improved automata generé&iolinear temporal
logic. Proc. 11th Int. Conf. on Computer Aided VerificatibhNCS 1633, pp. 249-260, 1999.

[DDP99] S.Das and D.L. Dill, and S. Park, Experience with Prediédtstraction,Conf. on Computer-
Aided Verification Trento, Italy, 1999, Springer Verlag.

[EHOO] K. Etessami, and G.J. Holzmann, Optimizing B$romatotdot#chi AutomatéRroc. CONCUR
200Q to appear.

[E90] E.A. Emerson, Temporal and modal logidandbook onTheoretical Computer Scienceol-
ume B, Elsevier Science, 1990, pp. 995-1072.

[GPVW9I5]R. Gerth, D. Peled, M.Y. Vardind P. Wolper, Simple on-the-fly automatic verification of lin-
ear temporal logicProc.Symposium on Protocol Specification, Testing, and Verification, War-
saw, Poland, pp. 3-18, 1995.

[GH93] P.Godefroid and G.Holzmann, On the verification of temporal propertiemc. Int. Conf on
Protocol Specification, Testing, and Verificatidiege, Belgium, May, 1993, pp. 109-124.

[GS97] S.Graf, H. Saidi, Construction of abstrastate graphs with PVSIn: O. Grumberg, EdConf.
on Computer Aided Verificatioiaifa, Israel, Springer Verlag, LNCS 1254, pp. 72-83. 1997.

[H81] G.J.Holzmann, Par— A protocol specification analyzer, AT&T Bell Laboratories Technical
Memorandum, TM81-11271-5, 1981.

[H88] G.J.Holzmann, An improved reachability analysis technidbeftware Practice and Experi-
ence Vol. 18, No. 2, pp. 137-161, Feb. 1988n early version appeared Rroc. Int. Sympo-
sium on Protocol SpecificatioMesting, and VerificatignZurich, Switzerland, North-Holland
Publ., Amsterdam, 1987, pp. 339-344.

[H90] G.J.Holzmann,Spin — A protocolanalyzerUnix Research Systefenth Edition, Volume II,
Papers, Saunders College Publ., pp. 423-429. January 1990.

[H91] G.J.Holzmann,Design and validation of computer protocoirentice Hall, Englewood ClIiffs,

[HPY4]

[HPY96]

[H97]
[HO8]
[H98b]
[H99]
[HS99a]

[HS99b]

[HS00]
[K68]

[KR88]
[Kw89]

[L83]

[L98]
[MP91]
[Ma8g7]

[M68]
[P94]

[P96]
[P97]
[P77]

[P57]
[P67]

NJ, 1991.
G.J.Holzmann and D. Peled, An improvement in formal verificatidrgc. 7th Int. Conf. on
Formal Description TechniqueEORTE94, Berne, Switzerland. October 1994.

G.J.Holzmann, D. Peled, and M. Yannakakis, On nestepth-first searchProc. 2nd Spin
Workshop Rutgers Univ., New Brunswick, Nedersey, August 1996, American Mathematical
Society, DIMACS/32, 1996.

G.J.Holzmann, The modaheckerSpin. IEEE Trans. on Software Engineerjngol 23, No. 5,
pp. 279-295, May 1997.

G.J.Holzmann, An analysis of bitstate hashiRgrmal methods in system desifol. 13, No.
3, Nov. 1998, pp. 287-307.

G.J.Holzmann,Designing executable abstractioRspc. Formal Methods in Software Practjce
Clearwater Beach, Fl., ACM Press, 1998.

G.J. Holzmann The engineering of a model checkBroc. 6th Spin WorkshopToulouse,
France, Sept. 1999, Springer Verlag, LNCS 1680.

G.JHolzmann, and M.H. Smith, A practical method for the verification of edemen sys-
tems. Proc. Int. Conf. on Software Engineerjrigs Angeles, May 1999, pp. 597-608.

G.JHolzmann, and M.H. Smith, Software model checking: extracting verification models from
source codeFormal Methods for Protocol Engineering and Distributed Systéthsver Publ.,
London, Oct. 1999, pp. 481-497.

G.J.Holzmann, and M.H. Smith, Automating softwédgeature verification.Bell Labs Technical
Journal Vol. 5, No. 2, April-June 2000, pp. 72-87.

J.A.W. Kamp, Tense Logiand the Theory of Linear OrdelPh.D. thesis, University of Califor-
nia at Los Angeles, 1968.

B.W. Kernighan,and D.M. RitchieThe C Programming Language, 2nd Editi&trentice Hall,
Englewood Cliffs, N.J., 1988.

M. Kwiatkowska, “Event fairness and non-interleaving concurrené&gimal Aspects o€om-
puting, 1989, Vol. 1, pp. 213--228.

L. Lamport, What good is temporal logic, in: R.E.A. Mason, ed., Inform&imcessing 1983:
Proc. of the IFIP 9th World Computer Congre&aris,France, North-Holland Pub., Amster-
dam, 1983, pp. 657-668.

J.R. Levitt, Formal verification techniques for digital systerf®D Thesis, Stanfordniversity,
Stanford, CA., Dec. 1998.

Z.Manna, and A. Pnuelifhe temporal logic of reactive and concurrent systems: Specification
Springer-Verlag, 1991.

A. Mazurkiewicz, Trace Theoryn: Advances in Petri Net4986, LNCS, Vol. 255, Springer
Verlag 1987, pp. 279-324.

R. Morris, Scatter storage techniqu€smm. of the ACWol 11, No. 1, Jan. 1968, pp. 38-44.

D. Peled, Combining partial order reductiongh on-the-fly model checkingProc. 6th Int.
Conf. on Computer Aided Verificatip8tanford, Ca., June 1994.

D. Peled, Combining Partial Order Reductions with On-the-fly Model-Checlioigrnal of
Formal Methods in Systems Desi§fol. 8, No. 1, 1996, pp. 39-64.

D. Peled, and T. Wilke, Stutter-invariat@mporal properties are expressible without the next-
time operator.Information Processing Letter997, 63:5, pp. 243-246.

A. Pnueli, The temporal logic of programBroc. 18th IEEE Symposium on Foundations of
Computer Sciengd 977, Providence, R.I., pp. 46-57.

A.N. Prior, Time and ModalityOxford: Clarendon Press, 1957.
A.N. Prior,Past, Present, and Futur®xford: Clarendon Press, 1967.

[RU71]
[SBOO]
[T72]
[T90]
[T95]
[T36]
[VW86]
[Vos]

[VOO]

[W93]

N. Rescher, and A. Urquhaiiemporal Logic, 1971, Springer Verlag, Library of Exact Philoso-
phy, ISBN 0-387-80995-3, 273 pgs.

F.Somenzi, and R. Bloem, Efficient Béroman u dotdot#chi-automata lfffimformula, Proc.
11th Int. Conf. on Computer Aided Verificati@®00, to appear.

R.E.Tarjan, DeptHirst search and linear graph algorithm§IAM J. Computingl:2, pp. 146-
160, 1972.

W. Thomas, Automata on infinite wordsélandbook on Theoretical ComputBcienceVolume

B, Elsevier Science, 1990, pp. 135-165.

F. Tip, A survey of program slicing techniquedournal of Programmind anguagesVol. 3,

No. 3, Sept. 1995, pp. 121-189.

A.M. Turing, On computable numbers, with an applicatiothéoEntscheidungs problerRroc.
London Mathematical SqcSer. 2-42, pp. 230-265 (see p. 247), 1936.

M.Y. Vardi, andP. Wolper, An automata-theoretic approach to automatic program verification.
Proc. Symp. on Logic in Computer Scign€ambridge, June 1986, pp. 322-331.

M.Y. Vardi, An automata-theoretic approach to linear temporal logicLogics for Concur-
rency: Structure versus Automafp. 238-265.SpringerVerlag, LNCS 1043, 1996.

W. Visser, S. Park, and J. Penix, Applying predicate abstractianottel checking object-
oriented programsProc. 3rd ACM SIGSOFT Workshop Bormal Methods in Software Prac-
tice, August 2000.

P.Wolper, D. Leroy, Reliable hashing without collision detect®rmc. 5th Int. Confon Com-
puter Aided VerificationElounda, Greece, Springer Verlag, LNCS 697, pp. 59-70.

