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What is Model Checking?

� Clarke & Emerson 1981: Model checking is an
automated technique that, given a finite-state
model of a system and a logical property,
systematically checks whether this property
holds for (a given initial state in) that model.

� Model checkers are tools that perform model
checking.

� Inputs: , a finite state model of the system
and , a requirement.
Output: Yes or No + a system run violating
the requirement (Counter example).
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Some popular model checkers

� SPIN: Verification of distributed software
systems
http://www.spinroot.com

� SMV: Verification of hardware circuits
http://www-cad.eecs.berkeley.edu/

�kenmcmil/smv/

� UPPAAL: Verification of real-time systems.
http://www.docs.uu.se/docs/rtmv/
uppaal/index.shtml
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Distributed systems

� Distributed systems: Systems with many
components (processes) that communicate
by exchanging messages, synchronously or
by using shared variables.

� Examples include network applications, data
communication protocols, multi-threaded
code, client-server applications.
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Design flaws in distributed systems

Common design flaws that occur in design of
distributed systems are

� Deadlock — all the processes/components
are blocked.

� Livelock, starvation — all the processes are
doing "useless" computation.

� Underspecification — unexpected reception
of messages.

� Overspecification — Dead code
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The model checker SPIN

� SPIN (Simple ProMeLa INterpreter) is a
verification tool for models of distributed
software systems.

� SPIN takes a model of the system design and
a requirement as input and the model
checking algorithm specifies whether the
system design meets the requirement or not.
If the requirement is not met, SPIN pulls out a
system run which violates the requirement
(counter example).
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Focus of SPIN

� SPIN verification is focussed on proving the
correctness of process interactions; not much
importance is given to internal computations
of the processes.

� Processes refer to system components that
communicate with each other.

� Communication is through rendezvous
primitives (synchronous), with asynchronous
message passing through buffered channels,
through access to shared variables or with
any combination of these.
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What does SPIN provide?

As a formal verification tool, SPIN provides

1. An intuitive, C-like notation for specifying
system design or its finite-state abstraction
unambiguously (ProMeLa — Process Meta
Language).

2. A notation for expressing general correctness
requirements as LTL formulae.

3. A methodology for establishing the logical
consistency of system design specified in
ProMeLa and the matching correctness
requirements written as LTL formulae. A tutorial on SPIN – p.10



SPIN ad!

� SPIN won the ACM software system award
for 2001 (Other winners include UNIX (1983),
TeX (1986), TCP/IP (1991), WWW (1995)
and Java (2002)).

� Holzmann (author of SPIN) won the Thomas
Alva Edison patent award in the Information
Technology Category, for the patent on
software verification with SPIN in 2003.

� SPIN is an open source tool.
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ProMeLa model

� ProMeLa is a C-like language to describe
models of distributed systems.

� ProMeLa also borrows notation from
Dijkstra’s guarded command language and
Hoare’s CSP language to talk about process
interactions.

� A model specified in ProMeLa is
non-deterministic and finite state.
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ProMeLa model

ProMeLa model consists of

� variable declarations with their types

� channel declarations

� type declarations

� process declarations

� init process (optional)
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ProMeLa model — example

bool flag;
chan PtoQ;
mtype = \{msg, ack\};

proctype P() \{ proctype Q() \{
... ...

\} \}

init \{
...
\}
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Processes in ProMeLa

� A process is defined by a proctype
definition.

� A proctype definition consists of

� name of the process

� list of formal parameters

� declaration of local variables

� sequence of statements local to the
process
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Process definition—Example

proctype Sender(chan in; chan out)
{
bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi
od
}
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Processes in ProMeLa

� There can be more than one process inside a
ProMeLa model.

� A process executes concurrently with other processes.

� A process also communicates with other processes by
sending/receiving messages across channels by using
shared (global) variables with other processes.

�

Local state of a process is defined by process counter

(defines the location of the process) and the values of
the local variables of the process.
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Invoking a process

� Processes can be created at any point inside
the model (even within another process).

� Creation of a process is done by using a run
statement inside the init process.

� Processes can also be created by adding the
keyword active in front of the proctype
declaration.
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Invoking a process—Example

proctype P(byte x) {
...

}
init {

run P(19);
...

}
...
active Q(int y) {

...
}
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Variables in ProMeLa

� Variables should be declared. A declaration
consists of the type of the variable followed by
its name.

� There are five different types— bit ([0..1]),
bool ([0..1]), byte ([0..255]), short
([ � � ��� � �

..

� � � � �

]), int ([ � � � � � �

..

� � � � �

]).
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Variables in ProMeLa

� ProMeLa models can also have arrays and
records.

� Arrays are declared with their name followed
by their range (array indexing starts from

�

)
and records are declared by a typedef
declaration folllowed by the record name.
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Variables in ProMeLa

� Variables can be local or global.

� Default initial value of both local and global
variables is

�

.

� Variables can be assigned a value by an
assignment, argument passing or message
passing.

� Type conflicts are found at run-time.

� Variables can be used in expressions which
includes most arithmetic, relational and
logical operators of C.
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Statements in ProMeLa

� Statements are separated by a semi-colon.

�

Assignments and expressions are statements.

�

skip statement: does nothing, only changes the
process counter.

�

printf statement: not evaluated during verification.

�

assert(expr): Assert statement is used to check if
the property specified by the expression expr is valid
within a state. If expr evaluates to

�

, it implies that it is
not valid and SPIN will exit with an error.
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if statement

�

if

:: choice1 -> stat1.1; stat1.2; � � �

:: choice2 -> stat2.1; stat2.2; � � �

:: � � �

:: choicen -> statn.1; statn.2; � � �

fi;

�

if statement is executable if there is at least one choice
which is executable and is blocked if none of the choices
are executable.

� If more than one choice is executable, SPIN
non-deterministically chooses one of the executable
choices. A tutorial on SPIN – p.24



if statement—Example

if
::

� � � � � �

-> � � � � �

::

� � � � � � �

-> � � �

:: else -> skip
fi;
The else guard becomes executable if none of
the other guards are executable.
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Smart use of if statement

Give the variable n a random value between 1
and 3.
if
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi
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do statement

�

do

:: choice1 -> stat1.1; stat1.2; � � �

:: choice2 -> stat2.1; stat2.2; � � �

:: � � �

:: choicen -> statn.1; statn.2; � � �

od;

�

do statement behaves in the same way as if
statement in terms of choice selection but, executes
the choice selection repeatedly.

�

break statement can be used to come out of a do

loop. It transfers control to the statement just outside
the loop. A tutorial on SPIN – p.27



Modelling communications with channels in ProMeLa

� Communication between processes is
through channels.

� There can be two types of communications:

� Message-passing or asynchronous

� Rendezvous or synchronous
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Channels in ProMeLa

Channels are FIFO in nature and are declared as
arrays:
chan <name> = [<dim>] of
<type1>,<type2>, <typen>;
name is the name of the channel, dim is the
number of elements that can occupy the channel
(synchronous communication is through a
channel of dimension

�

) and type1 etc. are the
type of elements that can be passed in the
channel.
Example: chan ptoq = [2] of {mtype,
bit}
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Sending and receiving messages in ProMeLa

� The notation for sending a message in a
channel is !.
chan-name ! <expr1>, <expr2>, � � �,
<exprn>;

� The notation for receiving a message from a
channel is ?.
chan-name ? <expr1>, <expr2>, � � �,
<exprn>;

� In both the cases, the type of the expression
should match the channel declaration.
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Modelling rendezvous communication in ProMeLa

� Rendezvous communication is modelled
using a channel of dimension zero.

� If sending through a channel is enabled and if
there is a corresponding receive that can be
executed simulteneously, then both the
statements are enabled. Both the statements
will handshake together and it will be a common
transition between the sending and the
receiving process.
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Example

Example:
chan ch = [0] of bit, byte;

� P wants to do ch ! 1, 3+7

� Q wants to do ch ? 1, x

� After the communication, x will have the value
10.
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Interleaving Semantics

� Statements belonging to different processes
are interleaved.

� Interleaving: If two statements of two different
processes can be executed independent of
each other, then the order of their execution is
arbitrary.

� Example: Statements changing values of two
local variables by two different processes.
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Statements—executable or blocked

ProMeLa statements are either executable or blocked.

� Assignment statements, skip, break, printf
statements are always executable.

� An expression is executable if it does not evaluate to
zero.

�

if and do statements are executable if at least one
guard evaluates to true.

� Send is executable if the channel is not full (by default)
and receive is executable if the channel is not empty.
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Atomic statement

atomic { statement1; ...; statementn }

� Can be used to group statements of a particular
process into one atomic sequence. That is, the
statements are executed in a single step and are not
interleaved with statements of other processes.

� The statement is executable of the first statement
statement1 is executable.

� The atomicity is broken if any of the statements is
blocking. That is, statements of other processes can
be interleaved in between.
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Atomic statement: Example

proctype P { byte x, y;
atomic {
x++;
y--;
}
}
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d-step statement

d-step { statement1; ...;
statementn }

� Again executed in one step.

� No intermediate states are generated or
stored.

� If one of the statements statementi blocks,
it is a run-time error.

atomic and d-step can be used to reduce the
number of states in the ProMeLa model.
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Timeout statement

timeout

� timeout statement becomes executable if no
other statement in any process is executable.

� It is like a system timeout that SPIN uses to
excape from hanging or deadlock and is
global.

� It is not a real-time feature and is cannot be
used to model time-outs involved in the
system design.
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SPIN references

� SPIN page: http://spinroot.com

� G. Holzmann, The Model Checker Spin ,IEEE
Trans. on Software Engineering, Vol. 23, No.
5, May 1997, pp. 279-295.

� G. Holzmann, The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, ISBN
0-321-22862-6, 608 pgs, cloth-bound.
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