
A tutorial on SPIN
Meenakshi. B.

Honeywell Technology Solutions Lab

Bangalore.

A tutorial on SPIN – p.1

What is Model Checking?

� Clarke & Emerson 1981: Model checking is an
automated technique that, given a finite-state
model of a system and a logical property,
systematically checks whether this property
holds for (a given initial state in) that model.

� Model checkers are tools that perform model
checking.

� Inputs: , a finite state model of the system
and , a requirement.
Output: Yes or No + a system run violating
the requirement (Counter example).

A tutorial on SPIN – p.2

Model Checking

(Initial) Design

Abstract
Verification Model

Implementation

Model Checker

(manual abstractions)

refinement techniques

A tutorial on SPIN – p.3

Model of System Development

ModelAnalysis

Checking

Coding

Design

Testing

Maintenance

A tutorial on SPIN – p.4

Some popular model checkers

� SPIN: Verification of distributed software
systems
http://www.spinroot.com

� SMV: Verification of hardware circuits
http://www-cad.eecs.berkeley.edu/

�kenmcmil/smv/

� UPPAAL: Verification of real-time systems.
http://www.docs.uu.se/docs/rtmv/
uppaal/index.shtml

A tutorial on SPIN – p.5

Distributed systems

� Distributed systems: Systems with many
components (processes) that communicate
by exchanging messages, synchronously or
by using shared variables.

� Examples include network applications, data
communication protocols, multi-threaded
code, client-server applications.

A tutorial on SPIN – p.6

Design flaws in distributed systems

Common design flaws that occur in design of
distributed systems are

� Deadlock — all the processes/components
are blocked.

� Livelock, starvation — all the processes are
doing "useless" computation.

� Underspecification — unexpected reception
of messages.

� Overspecification — Dead code

A tutorial on SPIN – p.7

The model checker SPIN

� SPIN (Simple ProMeLa INterpreter) is a
verification tool for models of distributed
software systems.

� SPIN takes a model of the system design and
a requirement as input and the model
checking algorithm specifies whether the
system design meets the requirement or not.
If the requirement is not met, SPIN pulls out a
system run which violates the requirement
(counter example).

A tutorial on SPIN – p.8

Focus of SPIN

� SPIN verification is focussed on proving the
correctness of process interactions; not much
importance is given to internal computations
of the processes.

� Processes refer to system components that
communicate with each other.

� Communication is through rendezvous
primitives (synchronous), with asynchronous
message passing through buffered channels,
through access to shared variables or with
any combination of these.

A tutorial on SPIN – p.9

What does SPIN provide?

As a formal verification tool, SPIN provides

1. An intuitive, C-like notation for specifying
system design or its finite-state abstraction
unambiguously (ProMeLa — Process Meta
Language).

2. A notation for expressing general correctness
requirements as LTL formulae.

3. A methodology for establishing the logical
consistency of system design specified in
ProMeLa and the matching correctness
requirements written as LTL formulae. A tutorial on SPIN – p.10

SPIN ad!

� SPIN won the ACM software system award
for 2001 (Other winners include UNIX (1983),
TeX (1986), TCP/IP (1991), WWW (1995)
and Java (2002)).

� Holzmann (author of SPIN) won the Thomas
Alva Edison patent award in the Information
Technology Category, for the patent on
software verification with SPIN in 2003.

� SPIN is an open source tool.

A tutorial on SPIN – p.11

ProMeLa model

� ProMeLa is a C-like language to describe
models of distributed systems.

� ProMeLa also borrows notation from
Dijkstra’s guarded command language and
Hoare’s CSP language to talk about process
interactions.

� A model specified in ProMeLa is
non-deterministic and finite state.

A tutorial on SPIN – p.12

ProMeLa model

ProMeLa model consists of

� variable declarations with their types

� channel declarations

� type declarations

� process declarations

� init process (optional)

A tutorial on SPIN – p.13

ProMeLa model — example

bool flag;
chan PtoQ;
mtype = \{msg, ack\};

proctype P() \{ proctype Q() \{
... ...

\} \}

init \{
...
\}

A tutorial on SPIN – p.14

Processes in ProMeLa

� A process is defined by a proctype
definition.

� A proctype definition consists of

� name of the process

� list of formal parameters

� declaration of local variables

� sequence of statements local to the
process

A tutorial on SPIN – p.15

Process definition—Example

proctype Sender(chan in; chan out)
{
bit sndB, rcvB;
do
:: out ! MSG, sndB ->

in ? ACK, rcvB;
if
:: sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi
od
}

A tutorial on SPIN – p.16

Processes in ProMeLa

� There can be more than one process inside a
ProMeLa model.

� A process executes concurrently with other processes.

� A process also communicates with other processes by
sending/receiving messages across channels by using
shared (global) variables with other processes.

�

Local state of a process is defined by process counter

(defines the location of the process) and the values of
the local variables of the process.

A tutorial on SPIN – p.17

Invoking a process

� Processes can be created at any point inside
the model (even within another process).

� Creation of a process is done by using a run
statement inside the init process.

� Processes can also be created by adding the
keyword active in front of the proctype
declaration.

A tutorial on SPIN – p.18

Invoking a process—Example

proctype P(byte x) {
...

}
init {

run P(19);
...

}
...
active Q(int y) {

...
}

A tutorial on SPIN – p.19

Variables in ProMeLa

� Variables should be declared. A declaration
consists of the type of the variable followed by
its name.

� There are five different types— bit ([0..1]),
bool ([0..1]), byte ([0..255]), short
([� � ��� � �

..

� � � � �

]), int ([� � � � � �

..

� � � � �

]).

A tutorial on SPIN – p.20

Variables in ProMeLa

� ProMeLa models can also have arrays and
records.

� Arrays are declared with their name followed
by their range (array indexing starts from

�

)
and records are declared by a typedef
declaration folllowed by the record name.

A tutorial on SPIN – p.21

Variables in ProMeLa

� Variables can be local or global.

� Default initial value of both local and global
variables is

�

.

� Variables can be assigned a value by an
assignment, argument passing or message
passing.

� Type conflicts are found at run-time.

� Variables can be used in expressions which
includes most arithmetic, relational and
logical operators of C.

A tutorial on SPIN – p.22

Statements in ProMeLa

� Statements are separated by a semi-colon.

�

Assignments and expressions are statements.

�

skip statement: does nothing, only changes the
process counter.

�

printf statement: not evaluated during verification.

�

assert(expr): Assert statement is used to check if
the property specified by the expression expr is valid
within a state. If expr evaluates to

�

, it implies that it is
not valid and SPIN will exit with an error.

A tutorial on SPIN – p.23

if statement

�

if

:: choice1 -> stat1.1; stat1.2; � � �

:: choice2 -> stat2.1; stat2.2; � � �

:: � � �

:: choicen -> statn.1; statn.2; � � �

fi;

�

if statement is executable if there is at least one choice
which is executable and is blocked if none of the choices
are executable.

� If more than one choice is executable, SPIN
non-deterministically chooses one of the executable
choices. A tutorial on SPIN – p.24

if statement—Example

if
::

� � � � � �

-> � � � � �

::

� � � � � � �

-> � � �

:: else -> skip
fi;
The else guard becomes executable if none of
the other guards are executable.

A tutorial on SPIN – p.25

Smart use of if statement

Give the variable n a random value between 1
and 3.
if
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

A tutorial on SPIN – p.26

do statement

�

do

:: choice1 -> stat1.1; stat1.2; � � �

:: choice2 -> stat2.1; stat2.2; � � �

:: � � �

:: choicen -> statn.1; statn.2; � � �

od;

�

do statement behaves in the same way as if
statement in terms of choice selection but, executes
the choice selection repeatedly.

�

break statement can be used to come out of a do

loop. It transfers control to the statement just outside
the loop. A tutorial on SPIN – p.27

Modelling communications with channels in ProMeLa

� Communication between processes is
through channels.

� There can be two types of communications:

� Message-passing or asynchronous

� Rendezvous or synchronous

A tutorial on SPIN – p.28

Channels in ProMeLa

Channels are FIFO in nature and are declared as
arrays:
chan <name> = [<dim>] of
<type1>,<type2>, <typen>;
name is the name of the channel, dim is the
number of elements that can occupy the channel
(synchronous communication is through a
channel of dimension

�

) and type1 etc. are the
type of elements that can be passed in the
channel.
Example: chan ptoq = [2] of {mtype,
bit}

A tutorial on SPIN – p.29

Sending and receiving messages in ProMeLa

� The notation for sending a message in a
channel is !.
chan-name ! <expr1>, <expr2>, � � �,
<exprn>;

� The notation for receiving a message from a
channel is ?.
chan-name ? <expr1>, <expr2>, � � �,
<exprn>;

� In both the cases, the type of the expression
should match the channel declaration.

A tutorial on SPIN – p.30

Modelling rendezvous communication in ProMeLa

� Rendezvous communication is modelled
using a channel of dimension zero.

� If sending through a channel is enabled and if
there is a corresponding receive that can be
executed simulteneously, then both the
statements are enabled. Both the statements
will handshake together and it will be a common
transition between the sending and the
receiving process.

A tutorial on SPIN – p.31

Example

Example:
chan ch = [0] of bit, byte;

� P wants to do ch ! 1, 3+7

� Q wants to do ch ? 1, x

� After the communication, x will have the value
10.

A tutorial on SPIN – p.32

Interleaving Semantics

� Statements belonging to different processes
are interleaved.

� Interleaving: If two statements of two different
processes can be executed independent of
each other, then the order of their execution is
arbitrary.

� Example: Statements changing values of two
local variables by two different processes.

A tutorial on SPIN – p.33

Statements—executable or blocked

ProMeLa statements are either executable or blocked.

� Assignment statements, skip, break, printf
statements are always executable.

� An expression is executable if it does not evaluate to
zero.

�

if and do statements are executable if at least one
guard evaluates to true.

� Send is executable if the channel is not full (by default)
and receive is executable if the channel is not empty.

A tutorial on SPIN – p.34

Atomic statement

atomic { statement1; ...; statementn }

� Can be used to group statements of a particular
process into one atomic sequence. That is, the
statements are executed in a single step and are not
interleaved with statements of other processes.

� The statement is executable of the first statement
statement1 is executable.

� The atomicity is broken if any of the statements is
blocking. That is, statements of other processes can
be interleaved in between.

A tutorial on SPIN – p.35

Atomic statement: Example

proctype P { byte x, y;
atomic {
x++;
y--;
}
}

A tutorial on SPIN – p.36

d-step statement

d-step { statement1; ...;
statementn }

� Again executed in one step.

� No intermediate states are generated or
stored.

� If one of the statements statementi blocks,
it is a run-time error.

atomic and d-step can be used to reduce the
number of states in the ProMeLa model.

A tutorial on SPIN – p.37

Timeout statement

timeout

� timeout statement becomes executable if no
other statement in any process is executable.

� It is like a system timeout that SPIN uses to
excape from hanging or deadlock and is
global.

� It is not a real-time feature and is cannot be
used to model time-outs involved in the
system design.

A tutorial on SPIN – p.38

SPIN references

� SPIN page: http://spinroot.com

� G. Holzmann, The Model Checker Spin ,IEEE
Trans. on Software Engineering, Vol. 23, No.
5, May 1997, pp. 279-295.

� G. Holzmann, The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, ISBN
0-321-22862-6, 608 pgs, cloth-bound.

A tutorial on SPIN – p.39

	What is Model Checking?
	Model Checking
	Model of System Development
	Some popular model checkers
	Distributed systems
	Design flaws in distributed systems
	The model checker SPIN
	Focus of SPIN
	What does SPIN provide?
	SPIN ad!
	ProMeLa model
	ProMeLa model
	ProMeLa model --- example
	Processes in ProMeLa
	Process definition---Example
	Processes in ProMeLa
	Invoking a process
	Invoking a process---Example
	Variables in ProMeLa
	Variables in ProMeLa
	Variables in ProMeLa
	Statements in ProMeLa
		exttt {if} statement
		exttt {if} statement---Example
	Smart use of 	exttt {if} statement
		exttt {do} statement
	Modelling communications with channels in ProMeLa
	Channels in ProMeLa
	Sending and receiving messages in ProMeLa
	Modelling rendezvous communication in ProMeLa
	Example
	Interleaving Semantics
	Statements---executable or blocked
	Atomic statement
	Atomic statement: Example
	d-step statement
	Timeout statement
	SPIN references

