
SystemC - A modeling platform supporting multiple design
abstractions

Preeti Ranjan Panda
Synopsys Inc.

700 E. Middlefield Rd.
Mountain View, CA 94043, USA

panda@synopsys.com

ABSTRACT
SystemC is a C++ based modeling platform supporting design ab-
stractions at the register-transfer, behavioral, and system levels.
Consisting of a class library and a simulation kernel, the language is
an attempt at standardization of a C/C++ design methodology, and
is supported by the Open SystemC Initiative (OSCI), a consortium
of a wide range of system houses, semiconductor companies, Intel-
lectual property (IP) providers, embedded software developers, and
design automation tool vendors. The advantages of SystemC in-
clude the establishment of a common design environment consist-
ing of C++ libraries, models and tools, thereby setting up a foun-
dation for hardware-software co-design; the ability to exchange IP
easily and efficiently; and the ability to reuse test benches across
different levels of modeling abstraction. We outline the features
of SystemC that make it an attractive language for design specifi-
cation, verification, and synthesis at different levels of abstraction,
with particular emphasis on the new features included in SystemC
2.0 that support system-level design.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids—
Automatic Synthesis, Hardware description languages, Optimiza-
tion, Simulation, Verification; B.6.3 [Logic Design]: Design Aids—
Hardware description languages; B.7.2 [Integrated Circuits]: De-
sign Aids—Simulation, Verification; C.0 [General]: Hardware/software
interfaces, System specification methodology; C.3 [Special-purpose
and application based systems]: Signal processing systems, Real
time and embedded systems; I.6.5 [Simulation and Modeling]:
Model Development—Modeling methodologies

General Terms
Design, Languages, Standardization, Verification, Performance

Keywords
SystemC, C/C++ based design, System level design, Hardware de-
scription language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montŕeal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

1. INTRODUCTION
The level of abstraction at which hardware is designed has in-

creased significantly with the widespread adoption of Hardware
Description Languages (HDLs) as the specification format, or the
design entry point, which has led to an enormous increase in pro-
ductivity over the earlier schematic entry based design methodol-
ogy. The leap in productivity came about because HDLs such as
VHDL and Verilog allowed designers to specify complex function-
ality at the behavioral and register transfer level (RTL) in a rela-
tively succinct manner compared to the earlier structural-only view.
However, after a decade of successful deployment, it appears that
the current generation of HDLs are insufficiently equipped to han-
dle the ever-increasing complexity hardware design and system-
level design. It is no longer productive for designers to model at
the level of individual bits imposed by HDL; more sophisticated
data abstraction capabilities are needed. Further, hardware is no
longer designed as an independent entity. Hardware modules fre-
quently co-exist on the same chip with processor cores, embedded
software, and other complex IP blocks, which forces designers to
perform slow and inefficient co-simulations of hardware and soft-
ware parts when attempting to simulate the entire system together.
A cleaner mechanism for handling software and hardware compo-
nents in the same environment is badly needed.

Several modeling platforms have been proposed in the past years
for increasing the level of abstraction and enabling hardware-software
co-design. Specification at higher levels of abstraction is possible
in environments such as SpecC [4]. A unified and integrated ap-
proach to hardware-software co-design is possible if the hardware
modeling description is based on the C/C++ languages that are pop-
ular in the software community. Hardware-C [6] is an example of
such a proposal.

SystemC [7, 5, 8, 3] is an emerging standard modeling platform
based on C++ that addresses the issues discussed above, and sup-
ports design abstraction at the RTL, behavioral, and system levels.
Consisting of a class library and a simulation kernel, the language
is an attempt at standardization of a C/C++ design methodology,
and is supported by the Open SystemC Initiative (OSCI), a consor-
tium of a wide range of system houses, semiconductor companies,
IP providers, embedded software developers, and design automa-
tion tool vendors. Apart from the modeling benefits available in
C++ such as data abstraction, modularity, and object orientation,
the advantages of SystemC include the establishment of a common
design environment consisting of C++ libraries, models and tools,
thereby setting up a foundation for hardware-software co-design;
the ability to exchange IP easily and efficiently; and the ability to
reuse test benches across different levels of modeling abstraction.

We discuss the overall SystemC design flow in Section 2; the

9375

SystemC features that enable hardware and system level modeling
in Sections 3 and 4; the language architecture in Section 5; and our
conclusions in Section 6.

2. THE SYSTEMC DESIGN FLOW
We outline here a typical design flow using the SystemC environ-

ment. The flow highlights the most important steps involved in the
verification and synthesis/implementation tasks and is not exhaus-
tive. Since the technology is new, several tools and methodologies
aimed at providing a more complete design environment are cur-
rently under development.

2.1 Simulation with SystemC
Figure 1 illustrates a typical simulation methodology in the Sys-

temC environment. The designer writes the SystemC models at
the system level, behavioral level, or RTL level using C/C++ aug-
mented by the SystemC class library. The class library serves two
important purposes. First, it provides the implementation of many
types of objects that are hardware-specific, such as concurrent and
hierarchical modules, ports, and clocks. Second, it contains a light-
weight kernel for scheduling the processes. The user’s SystemC
code can now be compiled and linked together with the class li-
brary with any standard C++ compiler (such as GNU’s gcc), and
the resulting executable serves as the simulator of the user’s de-
sign. The testbench for verifying the correctness of the design is
also written in SystemC and compiled along with the design. The
executable can be debugged in any familiar C++ debugging envi-
ronment (such as GNU’s gdb). Additionally, trace files can also be
generated to view the history of selected signals using a standard
waveform display tool.

SystemC Testbenches
SystemC Models

− System level
− Behavioral level
− RTL level

Executable
(Simulator)

SystemC
Class Library

C++ Compiler

C++ Debugger

Trace Files

Waveform
Display

Figure 1: Simulation methodology. SystemC models and test
benches are processed by a standard C++ compiler. The gen-
erated executable serves as the simulator, and can also be de-
bugged using a standard C++ debugger. History of selected sig-
nals can be dumped into a trace file for waveform display. (The
figure is adapted from an illustration in [5])

The import of a traditional software development environment
into the hardware design and system design scenario entails some

powerful advantages. The sophisticated program development in-
frastructure already in place for C/C++ can be directly utilized for
the SystemC verification and debugging tasks. For hardware de-
signers traditionally used to viewing simulation data in the form of
waveform displays, the trace file generation facility provides a fa-
miliar interface. Conceptually, the most powerful feature is that the
hardware, software, and testbench parts of the design can be simu-
lated in one simple and unified simulation environment without the
need for clumsy co-simulations of disparate modeling paradigms.

The source code for the latest SystemC class library (currently
version 2.0 beta) can be freely downloaded from [1].

2.2 Implementation and Synthesis
The most important feature of the SystemC implementation flow

is that the specification is in a common language for both hardware
and software parts. In fact, in the system level SystemC model,
the two are indistinguishable as the assignment of modules to hard-
ware or software has not yet been made. Thus, trace-offs in the
implementation of different parts of the design in hardware or soft-
ware, can be explored in a seamless fashion, eliminating the need
for re-implementing each module in both C and HDL. This also
eliminates the need for the system design tools to understand and
analyze the syntax and semantics of two disparate modeling envi-
ronments.

Hardware−Software
Co−synthesis

Functional level

Transaction level

System
Level

SystemC
Behavioral Model

SystemC
RTL Model

RTL and Logic
Synthesis

Gate Netlist

Synthesis
Behavioral

Behavioral

Level

RTL

Level

DESIGN
ENTRY

Embedded
Software

Figure 2: Synthesis/Implementation flow. Design entry could
be at the System, Behavioral, or RTL levels. The same test
bench could be used to validate models at different levels of
abstraction

9476

A typical top-down synthesis/implementation flow is illustrated
in Figure 2. The design entry could be at any level of abstraction:
system level (which could be an untimed functional model, or a
transaction-level model), behavioral level, or RTL level. The tran-
sition from a higher level to a lower level of abstraction could be
achieved either through automatic synthesis and compilation tools
(such as hardware/software partitioning and co-synthesis tools for
determining which portion of the design is synthesized into gates
and which portion is compiled into embedded software; and be-
havioral synthesis tools), or through a manual refinement process.
Finally, the RTL-level design, whether generated by hand or by pre-
vious synthesis steps, is the input to RTL- and logic-synthesis tools
familiar to hardware designers; the output is a gate-level netlist.

The specification language remains the same across all levels of
synthesis, and the changes in abstraction level involves a refinement
into greater detail within the same language and design environ-
ment. This allows, for example, the same test bench to be used to
verify the design at multiple levels, if carefully designed, resulting
in a design environment that is very tightly integrated. Of course,
since C++ has many constructs that are unrelated to hardware, ap-
propriate subsets (e.g., a synthesizable RTL style [9]) will have to
be used for synthesis.

Model refinement, where we proceed from an abstract specifica-
tion into a more detailed one, could be in terms of either data or
communication. Data refinement involves the fixing of the exact
number of bits for each data item, and is typically performed late
in the design phase, i.e., in the behavioral and RTL design phases.
In contrast, communication refinement typically occurs early in the
system design phase. Early models of system designs may em-
ploy abstract transactions for communication, which, after verifi-
cation, need to be replaced by an actual implementation. SystemC
provides a powerful communication refinement mechanism where
such a refinement can be performed easily by first fixing the in-
terface of the communication channels and then replacing abstract
protocols with concrete implementations. Such facilities, which
are absent in current HDLs, make SystemC an attractive design
language at the system level.

3. HARDWARE MODELING
In order for a language to be acceptable for designing at multiple

levels of abstraction, it is important that its expressive power should
at least match that of the current hardware description languages
familiar to designers. SystemC provides mechanisms to model the
typical hardware functionality by means of constructs analogous to
HDLs.

3.1 Structure and Hierarchy

Modules
Structural decomposition is one of the fundamental hardware mod-
eling concepts because it helps partition a complex design into
smaller entities. In SystemC, structural decomposition is specified
with modules, which are the basic building blocks. A SystemC de-
scription consists of a set of connected modules, each encapsulating
some behavior or functionality. Modules can be hierarchical, con-
taining instances of other modules. The nesting of hierarchy can be
arbitrarily deep, which is an important requirement for structural
design representation.

Signals and Ports
The simplest means of connecting together different SystemC mod-
ules is by using ports and signals. Actually, the interface of mod-
ules to the external world can be much more general and sophisti-

cated, and is described in Section 4.2, but the interface at the lowest
and most primitive levels matches the typical facilities available in
current HDLs. A port has an associated direction which can be
input, output, or bidirectional.

Figure 3 illustrates a simple structural design consisting of a
module C with hierarchical instantiations of two modules A and B
within it (the instantiations being named A1 and B1 respectively)
with the following characteristics:
Module A: input ports a1 and a2 and output port a3
Module B: input ports b1 and b2 and output port b3
Module C: input ports c1 and c2 and output port c3

The ports are connected as shown in Figure 3. The SystemC
description of the above structure looks as follows.

a1 a3

a2

b1

b2

b3

C

c1

c2

c3s

A1 B1

Outer Module

Ports Signal

Instantiation (module A)

Instantiation (module B)

Figure 3: Illustration of modules, ports, signals, and hierarchy.
Modules A and B are instantiated within module C. Signal s is
used to connect ports of A and B.

SC_MODULE (A) { // Module declaration
sc_in<bool> a1; // Port declarations
sc_in<bool> a2;
sc_out<bool> a3;
// rest omitted
};
SC_MODULE (B) {
sc_in<bool> b1;
sc_in<bool> b2;
sc_out<bool> b3;
// rest omitted
};
SC_MODULE (C) {
sc_in<bool> c1;
sc_in<bool> c2;
sc_out<bool> c3;
A *A1;
B *B1;
sc_signal<bool> s; // signal declaration
SC_CTOR (C) {
A1 = new A ("A1"); // Module instantiation
(*A1) (c1, c2, s); // Port mapping
B1 = new B ("B1");
(*B1) (s, c2, c3);

}
};

A module is declared with the keyword SC MODULE, and ports
are specified with sc in, sc out, and sc inout keywords,

9577

with the template parameter <bool> indicating that the type is
boolean (single bit). Other data types, including user defined ones,
could also be used as port types. The structural hierarchy is spec-
ified inside the constructor for the module, specified with the key-
word SC CTOR. The pointer declaration and invocation of new for
A1 and B1 establish a module instantiation. The port mapping pa-
rameters connect ports c1, c2, and signal s to three ports of A1.
Thus, signal s serves as the wire connecting the output port a3 of
A1 to the input port b1 of B1.

3.2 Functionality and Concurrency: Processes
The functionality of a system is described in processes in Sys-

temC. Analogous to VHDL processes, the SystemC processes are
used to represent concurrent behavior – multiple processes within
a module represent hardware or software blocks executing in par-
allel. Processes have an associated sensitivity list – a list of signals
that trigger the execution of the process. There are two important
types of processes.

Methods
A method process behaves like a function call and can be used to
model simple combinational behavior. It does not have its own
thread of execution, and hence, cannot be suspended. This charac-
teristic allows for high simulation efficiency.

Threads
A thread process can be used to model sequential behavior. It is
associated with its own thread of execution, and can be suspended
and re-activated.

A simple example involving method and thread processes is shown
below. Functions p and q (whose definitions are omitted) are reg-
istered as a method process and a thread process respectively. The
sensitivity list is specified using the sensitive keyword and the
<< operator.

SC_MODULE (X) {
sc_in<bool> a, b;
void p(); // Function definition omitted
void q();
SC_CTOR (X) {

SC_METHOD (p); sensitive << a;
SC_THREAD (q); sensitive << a << b;

}
};

3.3 Time and Clocks
Since the concepts of time and clocks are very important in mod-

eling hardware, SystemC provides a mechanism to specify them. A
clock with a period of 10 ns can be specified as:

sc_clock clk ("clk", 10, SC_NS);

The sensitive,sensitive pos, and sensitive neg key-
words can be used to specify synchronization of a process to a
clock.

SC_THREAD (x);
sensitive_pos << clk;

ensures that process x is activated on the positive edge of clock
signal clk.

3.4 Test Benches
Test bench design is an important part of hardware modeling and

consumes a significant amount of time. In SystemC, a test bench is

specified with an SC THREAD, just like any other process, and is
easily integrated into the overall design. Sophisticated test benches
can be built using all the constructs available in C++, in contrast
to the relatively primitive capabilities of VHDL and Verilog with
respect to, for example, file I/O, data abstraction, and text process-
ing. Since the test bench does not need to be synthesized, there
is no need to conform to any synthesizable subset of C++ while
writing them.

3.5 Data Types
In addition to the standard C++ data types such as int, bool,

char, etc., SystemC provides a rich set of data types which can be
used to model hardware-specific concepts. We outline some useful
data types here. The complete list of data types is given in [2].

4-state Logic
In addition to the standard bit values ’0’ and ’1’, it is useful to pro-
vide a mechanism to indicate that the value of a bit is unknown.
This helps identify initialization or conflict (multiple driver) prob-
lems during simulations. Further, there is the need to specify the
high impedance (or tristate) state on signals. With this in mind,
SystemC provides sc logic, a four state logic data type, the
states being ’0’ (low or false), ’1’ (high or true), ’X’ (unknown),
and ’Z’ (high impedance or tristate).

A logic vector data type, sc lv, is used to specify data items
more than one bit wide that need to be modeled with 4-state logic,
e.g., a tristatable data bus. A bus can be tristated as follows:

sc_lv<8> data; // 8 bits wide
data = "ZZZZZZZZ"; // set to high impedance

SystemC also provides data types to represent resolved logic sig-
nals which is useful in modeling wires and buses with multiple
drivers.

Bit and Bit Vector
The sc bit and sc bv types can be used to model bits and bit
vectors for which only two states, ’0’ and ’1’ are sufficient, and on
which logical operations such as logical AND, logical OR, etc are
performed. Useful operations for these types include the reduction
(and reduce, or reduce, and xor reduce) and part-select
(range). For example,

sc_bv<100> x,y; // 100-bit vectors
x = x | y; // logical OR
sc_logic r = x.and_reduce(); // AND reduction
sc_bv<50> z = x.range (49,0); // part select

Fixed and Arbitrary Precision
The integer data types provided in C++, such as int and unsigned
have an implementation dependent bit width. However, the de-
signer may wish to fix the precision of a data item if the range of
values it takes is known in advance. SystemC provides two data
type families for achieving this: fixed precision and arbitrary pre-
cision.

The fixed precision types sc int and sc uint can be used to
model data that is up to 64 bits wide. These data types are imple-
mented with a 64 bit integer. The usual operations associated with
C++ integers can be applied to the fixed precision types, one useful
addition being the bit-select operation. For example:

sc_int<48> x; // signed, 48 bits wide
sc_uint<40> y; // unsigned, 40 bits wide
x = x * y; // result truncated to 48 bits
sc_logic p = x[3]; // bit select

9678

There may be cases where a bit-width larger than 64 bits is needed
to model some data, for example, a wide data bus. In such cases,
the arbitrary precision types, sc bigint and sc biguint pro-
vided by SystemC can be utilized. For example,

sc_bigint<128> x; // signed, 128 bit

The regular arithmetic operations can be performed on these types.

Fixed Point Representation
While the float data type can be used to model real numbers
in the early stages of simulation, the hardware designer may have
in mind an exact representation of such data in terms of the pre-
cision used for integral and fractional parts. The sc fixed and
sc ufixed data types, which are used to represent such fixed
point numbers in SystemC, are accompanied by the standard char-
acteristics of fixed point arithmetic, such as quantization mode,
overflow mode, and saturation bits.

sc_fixed<8, 5, SC_RND, SC_WRAP, 2> x;

defines a variable x with total word length: 8 bits; integer word
length: 5 bits (left of decimal point); quantization mode: round to
plus infinity; overflow mode: wrap around; and 2 saturation bits.
The specified characteristics are used in all arithmetic for the fixed
point variables. The fixed point data type is an important modeling
feature of SystemC that is not found in HDLs.

The choice of data types has a significant impact on the simula-
tion speed, and care must be taken to use the correct data types dur-
ing modeling. For example, sc lv should be used only in specific
instances where either high impedance behavior is involved, or re-
set behavior in simulation is important; otherwise, the faster sc bv
type should be used. Similarly, if extensive arithmetic is performed,
the sc int and sc bigint types should be preferred to sc bv
to prevent unnecessary type conversions. The fixed precision types
(sc int) should be used wherever possible (i.e., required bit width
less than 64) instead of arbitrary precision (sc bigint) for sim-
ulation efficiency. Finally, the native C++ types (int) are the most
efficient.

The reader is referred to [2] for an exhaustive list of all the Sys-
temC data types and the relevant operations.

4. SYSTEM LEVEL MODELING
The features of SystemC reviewed in the previous section make it

a suitable hardware description language. However, the above men-
tioned capabilities would make SystemC only a minor improve-
ment over the existing HDLs. The true advantage of SystemC as a
specification language lies in the fact that it encompasses all the im-
portant hardware modeling features, as well as provides powerful
modeling constructs for system level design. This ensures that the
transition to a SystemC-based methodology entails no compromise
in terms of expressive power at the lower levels of abstraction, and
yet provides a useful framework for modeling at the higher levels.
Current HDLs sorely lack the latter ability.

The system level modeling features introduced in SystemC 2.0
[3] mainly include the support of a much more general and abstract
means of communication between processes and a more general
mechanism for event synchronization.

4.1 Events and Sensitivity
SystemC 2.0 introduces a general mechanism for specification

and notification of events. Events are no longer equated with the
toggling of a single bit, but are abstract types that can be used for
more general and complex interactions. The sc event type can

be used to declare events that can be created using the notify
keyword and be synchronized with in wait statements, as shown
below.

sc_event e1, e2; // declare events
sc_time t (5, SC_NS);
e1.notify (t); // notify event e1 after 5 ns
wait (e1); // suspend execution until

// event e1 occurs
wait (); // wait until an event occurs

// on the process sensitivity list
wait (10, SC_NS, e1 | e2);

// wait for events e1 or e2 to occur
// but for a maximum of 10 ns

4.2 Interfaces and Channels
In Section 3.1, we illustrated a simple example of modules con-

nected using signals. This picture of communication, where inter-
action between modules is restricted to the passing of values on
individual wires, is, however, at the lowest level of abstraction. At
the system level, we need the ability to model more abstract, so-
phisticated, and intelligent communication paradigms. SystemC
2.0 introduces the notion of channels and interfaces which provide
this modeling ability.

A system level SystemC design consists of a set of modules and
channels at the top level. Loosely speaking, modules cover the
functionality-related aspects of the system, and channels carry the
communication-related aspects. Channels can be very general and
implement complex algorithms within themselves, e.g., a complex
bus protocol with arbitration; in fact channels can have hierarchical
structure.

Interface Port

Channel

Module

Module Module

Figure 4: Interfaces and Channels. Ports of modules are con-
nected to channels through interfaces.

Figure 4 shows a simple design with three modules connected
to a channel. An interface consists of a set of method declara-
tions (not related to SC METHODs) implemented by the chan-
nel. These methods are visible to a port that is connected to the
channel through the interface. Thus, the port (and consequently,
the module) is insulated from the implementation details (such as
local data) of the channel itself. This architecture helps keep the
functionality-related parts of a design separate from communica-
tion, as far as possible, and allows the modification of one without
affecting the other as long as the interface is unchanged.

The interface and channel constructs were inspired by similar
concepts in the SpecC language [4].

4.3 Primitive and Hierarchical Channels
Channels in SystemC can be either primitive or hierarchical.

Primitive channels are relatively simple; SystemC 2.0 provides a
set of primitive channels which have wide applicability, such as
sc signal (classical signals discussed in Section 3.1), sc mutex

9779

(used to model mutual exclusion) and sc fifo (used for modeling
queues). Hierarchical channels can exhibit structure; they are mod-
ules themselves, which in turn, can contain processes, and other
channels and modules. Complex bus protocols which have several
sub-tasks can be effectively modeled using hierarchical channels.

A simple example of two modules connected by a channel of
type sc fifo is shown below. A FIFO connection is established
between the output port of module M1 and the input port of M2.

SC_MODULE (A) {
sc_fifo_in<int> in;
sc_fifo_out<int> out;
// rest omitted
};
...
A *M1, *M2; // instances of module A
...
sc_fifo<int> q (5); // create FIFO channel

// with buffer size 5
M1->out (q); // connect port ’out’ of M1 to q
M2->in (q); // connect port ’in’ of M2 to q

4.4 Methodology-Specific Libraries
The modeling mechanism presented above is general enough for

modeling many different models of communication and computa-
tion. Different communication methodologies could be built on
this basic modeling infrastructure. A future release of SystemC
will contain one such example – the master-slave communication
library. The elements provided here can be used to easily model
communication interfaces based on master-slave bus protocols.

5. SYSTEMC ARCHITECTURE

5.1 Language Design
The overall architecture of the SystemC class library is sum-

marized in Figure 5. The simulation kernel, i.e., the lightweight
scheduler that is responsible for activating and suspending the Sys-
temC processes is at the heart of the implementation, and forms
the base layer. The generalized event mechanism discussed in Sec-
tion 4.1, which forms the basis of synchronization, is introduced in
the next layer. With these layers as the foundation, the communi-
cation elements – interfaces, channels, and ports are defined in the
next layer. The design is based on the interface-method-call (IMC)
scheme: essentially, the ports access the channels only through the
interfaces. The example primitive channels supplied by SystemC is
built on this layer. Finally, the hierarchical and other user-defined
channels are built on the top layer. The most important observation
is that the upper layers are built cleanly on the lower ones, and the
designer can use the modeling mechanisms at any of the levels.

Channels, Interfaces, Ports

Events, Dynamic Sensitivity

SystemC Scheduler

(signals, FIFOs, etc.)Primitive Channels

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4 Methodology−specific and User−defined Channels

Figure 5: SystemC Language Architecture. Upper layers are
built cleanly on top of lower layers.

5.2 Simulation Kernel
The simulation kernel for SystemC follows the evaluate-update

paradigm that is common in HDLs. The concept of delta cycles,
where multiple evaluate-update phases can occur at the same sim-
ulation time, is supported. A simplified version of the simulation
algorithm is as follows:

1. Initialization: Execute all processes to initialize the system.

2. Evaluate: Execute a process that is ready to run. Iterate until
all ready processes are executed. Events occurring during the
execution could add new processes to the ready list.

3. Update: Execute any update calls made during step 2.

4. If delayed notifications are pending, determine list of ready
processes and proceed to Evaluate phase (step 2).

5. Advance the simulation time to the earliest pending timed
notification. If no such event exists, simulation is finished,
else determine ready processes and proceed to step 2.

6. CONCLUSION
SystemC is a new modeling environment that is rapidly emerging

as an industry standard for describing designs at the RTL, behav-
ioral, and system levels. While including all the important hard-
ware modeling capabilities offered by current generation HDLs,
SystemC also provides a powerful mechanism for system level de-
sign, with the facility to specify abstract communication protocols
that help model most known models of computation. The key ad-
vantage of a SystemC based design methodology is that the same
language infrastructure is used for specifying the design at vari-
ous levels of abstraction; thus, design refinement from abstract to
detailed levels include only a change in data types and communica-
tion, and do not involve a switch of design language. All SystemC
constructs have been implemented with standard C++, and no ex-
tensions to the C++ language were needed. The use of a standard
C++ based framework for specifying both hardware and software
parts of a design promises to smooth hardware-software co-design
by bridging the long-standing specification language gap.

7. REFERENCES
[1] The Open SystemC Initiative. http://www.systemc.org.
[2] SystemC 1.0 user’s guide. http://www.systemc.org, 2000.
[3] Functional specification for SystemC 2.0.

http://www.systemc.org, Jan. 2001.
[4] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao.

SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, Norwell, U.S.A, 2000.

[5] J. Gerlach and W. Rosenstiel. System level design using the
SystemC modeling platform. In Workshop on System Design
Automation, pages 185–189, Rathen, Germany, Mar. 2000.

[6] R. K. Gupta. Co-Synthesis of Hardware and Software for
Digital Embedded Systems. Kluwer Academic Publishers,
Boston, U.S.A, 1995.

[7] S. Liao, S. Tjiang, and R. Gupta. An efficient implementation
of reactivity for modeling hardware in the scenic design
environment. In Design Automation Conference, pages 70–75,
Anaheim, CA, June 1997.

[8] S. Swan. An introduction to system level modeling in
SystemC 2.0. http://www.systemc.org, May 2001.

[9] Synopsys Inc., Mountain View, CA. Describing Synthesizable
RTL in SystemC, May 2001.

9880

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

