
Chapter 1
A First Introduction to Uppaal

Frits Vaandrager

Abstract This chapter provides a first introduction to the use of the model checking
tool Uppaal. Uppaal is an integrated tool environment that allows users to model the
behavior of systems in terms of states and transitions between states, and to simulate
and analyze the resulting models. Uppaal can also handle real-time issues, that is,
the timing of transitions. Using an example of a jobshop, we explain in a step by
step manner how one can make a simple Uppaal model, simulate its behavior and
analyze its properties. This introduction is targeted at a broad audience, ranging
from high school students to software engineers and researchers. We only require
elementary knowledge of programming and mathematics. Although a rich theory
of model checking has been developed over the last decades, which includes both
clever algorithms and deep mathematics, this introduction focuses entirely on the
application of model checking technology, and hides the underlying mathematics
from the reader.

1.1 Introduction

1.1.1 Model Checking

Model checking [6, 4, 1] is a powerful technique for automated debugging of com-
plex reactive systems such as hardware components, embedded controllers and net-
work protocols. In model checking, specifications about a system are expressed as
(temporal) logic formulas, and efficient algorithms are used to traverse the model
defined by the system and check if the specification holds or not. In 2007, E.M.
Clarke, E.A. Emerson and J. Sifakis were awarded the ACM Turing Award for their

Frits Vaandrager
Institute for Computing and Information Sciences, Radboud University Nijmegen, Heijen-
daalseweg 135, 6525 AJ Nijmegen, The Netherlands, e-mail: F.Vaandrager@cs.ru.nl.

2 Frits Vaandrager

roles in developing model checking into a highly effective verification technology,
widely adopted in industry [3].

Model checkers allow one to analyze models that capture the dynamic behavior
of systems. These can be all sorts of systems: a network of computers or a printer, a
Sudoku puzzle or an ant colony, an autonomous robot or train control software, etc.
Actually, in principle any system can be analyzed using a model checker, as long
as it has states and transitions between states. In order to illustrate the concept of
model checkers, we consider the following puzzle:

Six girls each know a secret. By means of a series of bilateral conversations
(regular phone conversations, say) they want to exchange all secrets. When-
ever two girls have a conversation they share all the secrets they know at the
time. How many conversations are needed before every girl knows every se-
cret?

Figure 1.1 shows a state-transition diagram or automaton for the simplified ver-
sion of the problem in which there are 3 girls. A state consists of a 3 by 3 matrix
knows that records for each girl the gossips she knows. If girl i knows the gossip
of girl j then we write a 1 in the entry for row i and column j: knows[i][j] == 1.
Otherwise we write a 0: knows[i][j] == 0. In the initial state, at the top of the dia-
gram, each girl only knows her own gossip, and hence there are 1’s on the diagonal
and 0’s elsewhere. Transitions between states occur whenever girls have a conver-
sation. In the initial state three transitions are possible: girls 1 and 2 call each other,
girls 1 and 3 call each other, and girls 2 and 3 call each other. In the new states, the
rows for the corresponding girls are adjusted and all gossips are exchanged. Not all
conversations lead to a new state: sometimes a conversation does not produce any
new information for any of the participants, and there is just a loop from the state to
itself. Altogether 11 states can be reached starting from the initial state, and at least
3 conversations are needed before every girl knows every gossip.

Properties of state-transition diagrams can be described in the language of tem-
poral logic. For instance, if ϕ is a property of states, then the temporal logic for-
mula E� ϕ describes the property “there exists a path that leads to a state in which
ϕ holds”. Model checkers compute whether a temporal logic formula holds for a
given state-transition diagram. We can solve the gossiping girls puzzle by asking a
model checker to produce the shortest diagnostic trace that shows that the formula
E� “each girl knows each gossip” holds for the state-transition model for 6 girls. In
the syntax of the model checker Uppaal:

E<> forall (a : girls) forall (b : girls)
knows[a][b] == 1

Figure 1.2 shows the solution for the gossiping girls puzzle that was found by Up-
paal: at least 8 conversations are needed before every girl knows every secret. In fact,
the message sequence diagram displayed in Figure 1.2 has been directly generated
by the Uppaal tool.

1 A First Introduction to Uppaal 3

1

1

0

0

00

0

01

1

1

0

0

00

1

11

1

1

1

0

01

0

01

1

1

0

1

10

0

01

1

1

1

1

11

0

11

1

1

1

1

10

1

11

1

1

1

1

11

1

01

1

1

1

1

01

1

11

1

1

0

1

11

1

11

1

1

1

0

11

1

11

1

1

1

1

11

1

11

Fig. 1.1 State space for 3 gossiping girls.

Although utterly simple, the gossiping girls example already illustrates several
key features of model checkers:

1. No proofs. Mathematicians have established that, in general, n girls need at least
2n− 4 conversations to exchange all gossips [10]. The result of [10] required
ingenuity and hard work, whereas Uppaal produces its solution for the special
case n = 6 fully automatically.

2. Fast. Using his or her favourite model checker, an experienced user can construct
a model for the gossip puzzle within half an hour. Uppaal needs a few minutes
to find the optimal solution for n = 6, and just a few seconds to find an optimal
solution for the cases n < 6.

3. Diagnostic counterexamples. Model checkers are very good at finding unex-
pected scenarios. When trying to solve the gossip puzzle, most people quickly
come up with a solution that requires 9 conversations. The optimal solution found
by Uppaal, which only requires 8 conversations, is tricky and much harder to find
for humans. In industrial applications, model checkers often produce unexpected
event orders that lead to an error state, fast solutions for scheduling problems,
etc. In fact, since model checkers explore all reachable states, they will always
produce a diagnostic counterexample (if it exists), provided they have been given

4 Frits Vaandrager

enough computational resources. The diagnostic counterexamples produced by
model checkers frequently provide key insights in a design.

4. State space explosion. Since states of the model for n girls are n× n Boolean
matrices, the collection of states that can be reached from the initial state via zero
or more transitions (the “state space”) will contain in the order of 2n2

elements,
and hence grows exponentially in n. Using some special verification features
(symmetry reduction and the sweepline method), Uppaal can handle up to 7 girls
(see Chapter 2 Add ref). Despite these limitations, in practice we often see that
analysis of small instances of a parametrized model already produces important
insights. It is trivial to generalize the solution with 8 conversations for n = 6 of
Figure 1.2 to a general solution with 2n−4 conversations for n > 6. Similarly, if
a design contains a flaw then usually this flaw can already be revealed by model
checking a small instance of the design.

Fig. 1.2 Solution for gossiping girls puzzle found by model checker Uppaal.

1 A First Introduction to Uppaal 5

1.1.2 Uppaal

Uppaal is an integrated tool environment that allows users to model the behavior of
systems in terms of states and transitions between states, and to simulate and analyze
the resulting models. Uppaal is available for free for non-commercial applications
in academia and for private persons via www.uppaal.org. For commercial ap-
plications a commercial license is required, see www.uppaal.com. The software
runs under Windows, Linux and Mac OS X. Uppaal is developed in collaboration
between the Department of Information Technology at Uppsala University in Swe-
den and the Department of Computer Science at Aalborg University in Denmark,
with input from several other universities around the world (including the author’s
group from the Radboud University Nijmegen).

Uppaal is a toolkit with a wealth of possibilities to model and analyze systems.
In this chapter, we will restrict our attention to the absolute basics. The next chapter
of this handbook will give an overview of some of the more advanced features of
Uppaal. More details and documentation can also be found on the Uppaal website
and in the tutorial paper [2] (the last article requires some background in formal
methods). The help menu within Uppaal also provides an excellent explanation of
the various features and possibilities of the tool. Actually, some text in this chapter
has been directly taken from the help menu.

There are numerous other model checkers that one can freely download from the
internet: Spin, Blast, MCRL2, Java Pathfinder, etc. We refer to [13] for an overview.
Advantages of Uppaal are the graphical user interface and the short learning curve.
After you have spent half a day on reading this tutorial and following the detailled
instructions for building and analyzing some simple models, you can already start
using the tool yourself.

1.2 A jobshop

We will now explain step by step how a simple production line can be modeled in
Uppaal. This example is due to Robin Milner; we have taken the following descrip-
tion and illustration of Figure 1.3 from [12]:

We suppose that two people are sharing the use of two tools — a hammer and
a mallet — to manufacture objects from simple components. Each object is
made by driving a peg into a block. We call a pair consisting of a peg and
a block a job; the jobs arrive sequentially on a conveyor belt, and completed
objects depart on a conveyor belt. The jobshop could involve any number
of people, whom we shall call jobbers, sharing more or fewer tools. In this
chapter, we assume a system with two jobbers and a hammer and a mallet. To
make the example more specific, we shall assume that the nature of the job
influences the jobber’s actions in a particular way. We suppose that he may

6 Frits Vaandrager

use two predicates easy and hard over jobs, to determine whether a job is easy
or hard or neither. He will do easy jobs with his hands, hard jobs with the
hammer, and other jobs with either hammer or mallet.

Fig. 1.3 A jobshop (picture taken from [12]).

1.3 The system editor

After starting Uppaal, we see the window displayed in Figure 1.4. The Uppaal
graphical user interface consists of three main parts, accessible via three tabs in
the main window: the system editor, which can be used to construct models, the
simulator, in which system behavior can be simulated, and the verifier, in which
system behavior can be analyzed. In this subsection we discuss the system editor,
subsection 1.4 will present the simulator, and subsection 1.6 will present the verifier.
Upon starting Uppaal, at first the system editor is displayed.

A Uppaal model (called system) is defined as a composition of a number of ba-
sic components (called automata or processes). Automata are diagrams with states
(called locations) and transitions between states (called edges).

The system editor has four drawing tools for building automata, see Figure 1.5,
named Select, Location, Edge and Nail.

• The Select tool is used to select, move, modify and delete elements. Elements
can be selected by clicking on them or by dragging a rubber band around one or

1 A First Introduction to Uppaal 7

Fig. 1.4 Uppaal after starting the toolkit.

Fig. 1.5 The four drawing tools Select, Location, Edge and Nail.

more elements. Elements can be added or removed from a selection by holding
down the control key while clicking on the element. The current selection can be
moved by dragging them with the mouse. Double clicking an element brings up
a menu in which properties for that element can be specified. Right clicking an
element brings up a pop-up menu from which properties of the element can be
changed.

• The Location tool is used to add new locations. Simply click with the left mouse
button in order to add a new location. Be careful: if one clicks several times new
locations will be stacked on top of each other (a common mistake, leading to
models with strange behavior). In order to move a location to another position or
to edit its properties, one first has to return to the Select tool.

• The Edge tool is used to add new edges between locations. Start the edge by
clicking on the source location, then click in order to place nails and finally click
the target location. The operation can be cancelled by pressing the middle or
right mouse button. It is possible to change the source and target of an edge by

8 Frits Vaandrager

moving the mouse to the beginning or end of an edge until a small circle appears
(the “nail”). Drag this circle to a new location in order to change the source or
target of the edge.

• The Nail tool is used to add new nails to an edge, that is, places where an edge
may change direction. Simply click and drag anywhere on an edge to add and
place a new nail.

We will now construct our first Uppaal model. In the field Name at the top of
the drawing window we enter the name of the first component (“template”) of our
model: Jobber. Next we right click (with the Select tool) on the location which
Uppaal has already placed in the drawing window. We can then give this location
a name, for instance begin. Each automaton has an initial location, marked by a
double circle. During simulation or in verifications the automaton will always start
in this location. By checking the box Initial in the menu for a location, we specify
that this location is the initial location of the automaton. The menu contains a couple
of other fields and options (Invariant, Urgent and Committed), but for the moment
we will not use these. Note that in Uppaal there are no end states or final states.

Fig. 1.6 A first version of the model.

We can continue drawing and construct the automaton that is depicted in Fig-
ure 1.6. The first transition from the initial location corresponds to the moment when
a jobber picks a new job from the conveyor belt. There are three transitions possi-

1 A First Introduction to Uppaal 9

ble since according to the informal specification there are three types of jobs: easy
jobs, hard jobs and jobs with average difficulty (neither easy nor hard). The next
transition corresponds to the moment at which the jobber grabs a tool (if needed)
and starts working on the job. In the case of a job with average complexity, there are
two possible transitions, depending on the tool that is selected. The third transition
corresponds to the moment that the jobs is done: the automaton returns to its initial
state and the jobber is ready for the next job.

At this point, we have not specified in our model how the choice between the
transitions from location begin to location easy, average or hard is made.
Also, we have not specified how the choice between the transitions from loca-
tion average to location work av mallet and work av hammer is made.
Choices for which the model does not specify how they are resolved are called non-
deterministic. Nondeterminism is extremely useful for maintaining a high level of
abstraction in descriptions of the behavior of physical systems and machines [8].
The nondeterministic nature of Uppaal is one of the most powerful features of the
tool, it allows one to model behavior without having to specify conditions for all
transitions, and to focus on the possible behavior in an abstract sense and still be
able to check the model.

Fig. 1.7 Declaration of system components.

Once we have constructed the automaton of Figure 1.6, our first model is al-
most ready. Click on System declarations in the left window. We now see a screen
in which one can list all the processes (automata) in a model. As shown in Fig-
ure 1.7, we specify that our first model consists of two instances of the template
Jobber, called Jobber1 and Jobber2. So our model consists of two automata
that, intuitively, run in parallel. As we will see, a global state of a full model is fully
determined by the locations (states) of its components, and the global transitions of
a full model are in direct correspondence with the edges (transitions) of its compo-
nents. By clicking on Tools in the menu bar at the top of the screen, and then on
Check Syntax, we may check whether a model is syntactically correct. If a model

10 Frits Vaandrager

contains mistakes, these will be underlined in red. A more detailed description, list-
ing all the specific templates and declarations that contain syntax errors, is provided
in a window at the bottom of the screen (normally not visible, but one can make it
larger).

1.4 The simulator

Once a model is syntactically correct, we can simulate it, that is, explore the state
space of the model in a step-by-step fashion, by selecting the tab Simulator. The
resulting screen is displayed in Figure 1.8. Uppaal makes two copies of the template

Fig. 1.8 Screenshot of the simulator.

Jobber, one for each automaton instance. Using red dots the current location of
each automaton is highlighted. Initially, the current location of an automaton is its
initial location. In the simulation control panel on the left, we see that (due to non-
determinism) six transitions are possible from the initial state of the system (three
for each jobber). When we select one of these transitions, the corresponding step
in the automaton diagram for Jobber1 or Jobber2 is colored red. Pressing the
Next button causes the simulated system to take the selected transition, and to up-

1 A First Introduction to Uppaal 11

date the current location. Using the Prev button one can go to the previous step in
a simulation trace, with the Reset button one can bring the system back to its initial
state, and with the Replay button one can instruct Uppaal to automatically replay
the current trace. If we press the button Auto, then Uppaal starts executing randomly
selected transitions, one after the other. The speed of the simulation can be changed
by moving the arrow in between Slow and Fast. We can stop the random simulation
by pressing the Auto button again.

Note that there exists a subtle difference between the nondeterministic choice of
transitions as specified in Uppaal models and the probabilistic (random) choice of
transitions by the simulator. Whenever a Uppaal model contains a nondeterministic
choice, for instance the three outgoing transitions of location begin, we have no
information whatsoever about how this choice will be resolved in an implementa-
tion: maybe, easy, average and hard jobs strictly alternate; maybe, a specific jobber
always picks easy jobs; or maybe, arrival of jobs is governed by a probability dis-
tribution in which 50% of the jobs is easy, 40% is average, and 10% is hard. Etc.
In general there are infinitely many ways to resolve a nondeterministic choice in a
Uppaal model. Within the simulator, however, based on the idea that a user wants to
see as many global states as possible during a simulation run, Uppaal uses a pseu-
dorandom number generator to make a uniform probabilistic choice between all the
transitions that are enabled within a given global state.

1.5 Channels

The simulator is very useful for obtaining insight in the behavior of a model and
finding mistakes. By playing with our first model in the simulator, we quickly dis-
cover that something is wrong: both jobbers can be in location work hard simul-
taneously. This should not be possible, since in this location both jobbers are using
the hammer, and there is only one hammer. Hence we need to refine/correct our
model.

In order to fix the model, we introduce separate templates for both the hammer
and the mallet. For each tool there are 2 locations: free or taken. The automaton
for a tool moves from location free to location taken when it is grabbed by one
of the jobbers. In order to model the synchronization between tools and jobbers,
we use the notion of (synchronization) channels from Uppaal. Once “a” has been
declared as a channel, transitions can be labeled with either a! or a?. This can be
done by double clicking (within the Editor) transitions with the Select tool, and then
writing a! or a? in the Sync field. When two automata synchronize on channel “a”,
this means that an a! transition of one automaton occurs simultaneously with an
a? transition of another automaton. An a! or a? transition can never occur on its
own: a! always has to synchronize with a?, and vice versa. If there is one automaton
S that can do an a! but two automata R1 and R2 that can do an a?, then there is
a nondeterministic choice and S can synchronize with either R1 or R2. The other
automaton has do something else or has to wait until the next a! synchronization

12 Frits Vaandrager

will be offered. In our jobshop example it does not matter which transition is labeled
with a! and which transition is labeled with a?. Often, we place the a! on a transition
of the component that takes the “initiative” for the synchronization. In the case of the
jobshop, the jobbers take the initiative to grab a tool, whereas the tools are passive
and just “wait” until someone is using them. Hence, we place the !’s in the template
for the jobbers, and the ?’s in the templates for the tools. Figure 1.9 shows the
adjusted model of the jobber, in which synchronization channels have been added.
Synchronization channels must also be declared. This can be done by clicking on the

work_hard

work_av_hammer

work_av_mallet

work_easy

hard

easy

average

begin

put_hammer!

put_hammer!

put_mallet!

get_hammer!

get_hammer!

get_mallet!

Fig. 1.9 Model of jobber, extended with synchronization labels.

(global) project Declarations in the window on the left, and inserting the following
text:

// Place global declarations here.
chan get_hammer, put_hammer, get_mallet, put_mallet;

If we simulate the extended model, we quickly see that in the new model dead-
locks are possible, global states from which no transition is possible. This occurs,
for instance, when both jobbers are in location hard and both want to perform
a get hammer! transition. But since there is no automaton that can perform a
matching get hammer?, the system comes to a grinding halt. In order to rule out
these deadlocks, we add new templates Hammer and Mallet (this can be done by
selecting the option Insert Template in the Edit menu). Figure 1.10 shows the defini-
tions of these templates.1 We may add the new templates to the System declarations

1 Actually, it would be better to have just one template Tool, with two instances Hammer and
Mallet. It is possible to define this in Uppaal, but this involves adding channel names as param-

1 A First Introduction to Uppaal 13

takenfree

put_hammer?

get_hammer? takenfree

put_mallet?

get_mallet?

Fig. 1.10 Models of hammer and mallet.

via the text

system Jobber1, Jobber2, Hammer, Mallet;

Note that a system declaration may contain both names of instances of a template
(Jobber1 and Jobber2) as well as names of templates (Hammer and Mallet).
We have now completed our first Uppaal model! We can open the model in the
simulator and convince ourselves that it indeed behaves as specified in the informal
description. For this it may be helpful to use the Message Sequence Chart (MSC)
visualisation, which is available through the lower rightmost panel of the simulator.
Figure 1.11 shows a screenshot with an MSC of our model. In the MSC view there
is a vertical line for each automaton, and a horizontal line for each synchronization
point. Once we are satisfied with the model, we can save it by selecting in the File

Fig. 1.11 Screenshot of the Message Sequence Chart panel.

eters to a template. Since we prefer to explain the notion of template parameters in Section 1.9 of
this chapter, we introduce separate templates for hammer and mallet.

14 Frits Vaandrager

menu the option Save System As.... Uppaal models are stored as .xml files.

1.6 The verifier

The Simulator is very useful for playing with a model and obtaining insight, but
it does not answer questions like “Is it possible to reach a state in which (some
given) property Bad holds”? Even if we have not seen a Bad state after hours of
simulation, this does not guarantee that no such state exists! Fortunately, Uppaal’s
Verifier allows us to rigorously answer this type of questions.

Fig. 1.12 Screenshot of the Verifier.

1.6.1 Queries

Within the Verifier, we can specify a so-called Query, a property that may or may not
hold for a given model. By exhaustive exploration of the set of reachable states (the
state space), the Verifier can establish whether a Query is satisfied or not. Figure 1.12

1 A First Introduction to Uppaal 15

shows a screenshot of the Verifier. Queries often start with the symbols “A[]”. This
notation, which is taken from the field of temporal logic, means “In all reachable
states it is the case that”. Thus, for example, the query

A[] not deadlock

states that in all reachable states of the system there is no “deadlock”. Recall that
a global state has a “deadlock” if no outgoing transitions are possible. Stated dif-
ferently, the above query asserts that in all reachable states at least one transition is
possible. If we type the query in the Query window of the Verifier and then press the
Check button, Uppaal explores all the reachable states to see if they have an outgo-
ing transition. In the case of our model this is indeed the case, and therefore Uppaal
returns Property is satisfied. This means that in each of the reachable states always
either Jobber1 or Jobber2 can proceed.

A new query can be entered by pressing the Insert button, and typing the query
in the window Query. We may for instance enter the following text:

E<> (Jobber1.work_hard && Jobber2.work_hard)

Here the notation “E<>”, again taken from temporal logic, means “There exists
a reachable state such that”. The above query asserts that there exists a reachable
state in which Jobber1 and Jobber2 are in location work hard, that is, both
jobbers are working on a hard job. Much of the syntax of Uppaal is similar to that
of common programming languages such as C, C++, Perl and Java. When we ask
Uppaal to check the above query, the result is Property not satisfied. This is what we
expect: if a jobber is working on a hard job he is using the hammer, and since there
is only one hammer, at most one jobber can work on a hard job at a time. Note that
Uppaal does not use any clever form of reasoning to arrive at this conclusion. The
tool just uses brute force to explore all the reachable global states of the model and
to check for each of these states whether both jobbers are working on a hard job.

In the Uppaal help menu the full syntax for queries and expressions is described.
In this chapter, we only consider queries of the form A[]e and E<>e, where e is
an expression. An expression e consists of a boolean combination of atomic propo-
sitions. Atomic propositions can be of the form A.l, for A an automaton and l a
location. Such a proposition is true in a global state of the model if in this state
automaton A is in location l. Table 1.1 gives some examples of boolean operators
that can be used in Uppaal to define properties. Further on in this chapter we will
encounter other operators for constructing properties.

Symbol Operator name Meaning
&& and e && f is true if both e and f evaluate to true
|| or e || f is true if e evaluates to true or f evaluates to true
== equality e == f is true if e and f evaluate to same value
imply implication e imply f is true if e evaluates to false or f evaluates to true
not negation not e is true if e evaluates to false

Table 1.1 Some logical operators in Uppaal

16 Frits Vaandrager

1.6.2 Diagnostic traces

We can ask Uppaal whether there exists a reachable state in which one jobber is
working on an average job with a mallet, and the other jobber is working on a
average job with the hammer:

E<> (Jobber1.work_av_mallet && Jobber2.work_av_hammer)

Uppaal then answers Property is satisfied. In this case, Uppaal can also provide a
concrete example that illustrates why the property holds, that is, a trace leading to
a state in which the first jobber is working on an average job using the mallet, and
the second jobber is working on an average job using the hammer. In order to let
Uppaal compute such an example, we choose under Options the entry Diagnostic
Trace and then select the option Shortest. If we now let Uppaal check the above
property again, it will again produce the answer Property is satisfied but in addi-
tion it will compute the shortest path (or trace) leading to a state in which both
Jobber1.work av mallet and Jobber2.work av hammer hold. The tool
asks whether it may store this path in the simulator. If we give Uppaal permission to
do this, we can replay the trace in the simulator. If we open the simulator, then we
see the final state of the trace in which Jobber1 is in location work av mallet
and Jobber2 is in location work av hammer. By pressing the Reset button we
go to the initial state of the trace, and by pressing the Replay button we tell Uppaal
to replay the trace within the simulator. We can also replay the trace step-by-step by
repeatedly pressing the Next button at the bottom of the screen.

In general, Uppaal can provide a diagnostic trace for E<> properties that hold,
and for A[] properties that do not hold. In the case of E<> properties that do
not hold, or A[] properties that hold, Uppaal can only report that it exhaustively
checked all the reachable states of the model and didn’t find anything. In the above
example of an E<> property, the diagnostic trace is rather trivial and consists of
only four transitions. However, in realistic models of industrial applications, diag-
nostic traces may describe tricky scenarios involving thousands of transitions. In
such cases, Uppaal’s ability to provide diagnostic traces is essential (see [7] for an
example where Uppaal produced a diagnostic trace for a protocol of Bang & Olufsen
involving more than 2000 steps). If Uppaal says that a certain correctness property
does not hold, an engineer typically wants to know why this is the case.

1.6.3 Saving queries and traces

We can save queries by selecting in the File menu the option Save Queries As....
The queries are then saved as a text file with extension .q. If one opens a Uppaal
model model.xml, then automatically also the query file model.q is opened (if
it exists). Alternatively, one can open a query file by selecting in the File menu the
option Open Queries.... It is also possible to save traces by pressing the Save button

1 A First Introduction to Uppaal 17

in the simulator. Traces are saved as (unreadable) text files with extension .xtr. A
trace file can be opened by pressing the Open button in the simulator.

1.6.4 How many states are there?

Let us try to compute the total number of reachable states of our jobshop model.
Since each jobber is modeled by an automaton with 8 locations, and each tool is
modeled by an automaton with 2 locations, there are at most 8× 8× 2× 2 = 256
global states: the number of global states is bounded by the product of the number
of states of all the components in the system. However, many of these global states
can not be reached from the initial state: they will never occur in any run of the
system. In order to see this, observe that once we know the state of the two jobbers,
we also know the state of the two tools:

A[] Mallet.taken == (Jobber1.work_av_mallet
|| Jobber2.work_av_mallet)

A[] Hammer.taken == (Jobber1.work_av_hammer
|| Jobber1.work_hard
|| Jobber2.work_av_hammer
|| Jobber2.work_hard)

The first query states that the mallet is taken exactly when either the first or the
second jobber uses it for an average job. The second query states that the hammer
is taken exactly when either the first or the second jobber is using it for either an
average or a hard job. Since the locations of both mallet and hammer are fully de-
termined by the locations of the jobbers, this means that our model has at most
8×8 = 64 global states that are reachable from the initial state.

Five of these remaining 64 states can not be reached since the mallet and hammer
can only be used by one jobber at a time:

A[]
not (Jobber1.work_av_mallet && Jobber2.work_av_mallet)
&&
not (Jobber1.work_av_hammer && Jobber2.work_av_hammer)
&&
not (Jobber1.work_av_hammer && Jobber2.work_hard)
&&
not (Jobber1.work_hard && Jobber2.work_av_hammer)
&&
not (Jobber1.work_hard && Jobber2.work_hard)

All the other combinations of locations of Jobber1 and Jobber2 can be reached,
and so the total number of reachable states of our model is 64− 5 = 59. Unfortu-
nately, the regular version of Uppaal has no option to count the number of reachable

18 Frits Vaandrager

states in a model. Such an option is present however in the command line version
of the verifier: verifyta -u. For Uppaal our model is really small: the tool can
easily handle models with thousands or even millions of states. Nevertheless, it is
also easy to construct models that are so big that Uppaal cannot handle them and,
for instance, runs out of memory. For instance, if we modify our jobshop model and
increase the number of jobbers to 100, then the size of the state space becomes in
the order of 8100 and too big for Uppaal. When constructing Uppaal models, one
should always take care that the state space does not become too big.

1.7 Variables

We will now describe how one can add integer state variables to Uppaal models.
The values of these variables can be tested and updated in transitions, and thus influ-
ence the behavior. State variables are indispensable for modeling nontrivial systems
and give the Uppaal modeling language an expressive power that is comparable to
simple programming languages. To illustrate the use of state variables, we discuss a
small modification of the jobshop model:

We suppose that the jobbers stop with their work as soon as they have com-
pleted 10 jobs together.

In order to capture this additional requirement in our model, we add an integer
state variable that records how many jobs have been taken from the belt. This is
achieved by adding the following lines in the global project Declarations in the
window on the left in the Editor:

const int J = 10;
int[0,J] jobs;

The first line declares an integer constant with value 10. As suggested by their name,
the value of constants always remains the same. In the second line an integer vari-
able jobs is declared with minimum value 0 and maximum value J. The value of
variables can be modified when transitions occur. By default, the initial value of a
variable is 0. The domain of integer variables in Uppaal is always bounded. If we
specify no bounds and simply declare

int jobs;

then implicitly the minimum value is −32768 and the maximum value is 32767.2

Whenever during exploration of the state space — either in the simulator or in the
verifier — a variable gets assigned a value outside its domain, this is referred to as
a “run time error” and an error message is generated.

2 Uppaal uses 16-bit int’s, including 1 bit to represent the sign.

1 A First Introduction to Uppaal 19

Figure 1.13 shows an extension of the jobber model in which the variable jobs
is used. In the location begin, a jobber only accepts a new job when jobs < J.
In this case, the value of jobs is incremented by 1. We can implement this change
of the model by double clicking the transition from begin to easy, and then write
jobs< J in the field Guard of the resulting menu. In Uppaal, a transition can only
be taken if its guard evaluates to true (if no guard is specified then we assume it
equals true). In the field Update of the transition, we specify that the value of
jobs must be incremented by 1 whenever the transition is taken. This is done by
writing jobs++, using syntax that has been taken from the programming language
C. Alternatively, we can also write jobs = jobs+1 or jobs := jobs+1 (this all
means the same). We also add an extra location done to the model, and a transition
from begin to done, which is taken whenever jobs has reached the value J and all
jobs are done.

jobs++

jobs++

jobs++

jobs<J

jobs<J

jobs<J

jobs==J

average

easy

hard

begin

put_hammer!

put_hammer!

work_harddone

work_easy

work_av_hammer

work_av_mallet

get_mallet!

get_hammer!

put_mallet!

get_hammer!

Fig. 1.13 Model of jobber in which exactly J jobs are carried out.

When we now start the simulator, we see a separate window in which, for each
state, the value of the state variable jobs is listed. Using the verifier, we can estab-
lish that the model of Figure 1.13 satisfies exactly the same correctness properties
as the model of Figure 1.9, except for the property

A[] not deadlock

which is no longer satisfied. When the jobbers have finished J jobs and have moved
to location done, no further transitions are possible and therefore a deadlock state
has been reached. We recall that in Uppaal deadlock is a property of global states,
not of individual components. Thus a global state in which, for instance, Jobber1

20 Frits Vaandrager

is in location done but Jobber2 is in location easy is not deadlocked, even though
for Jobber1 no further transitions are possible.

Observe that in the modified model, both jobbers together perform J jobs. This
is because jobs is a global variable that can be tested and updated by both jobbers.
In Uppaal, we can also declare local variables, which can only be used by one
automaton. When in the Editor we click on the “+” symbol at the left of the template
Jobber, a new line Declarations appears below Jobber. When we select this line,
we can declare local variables for the template. For instance, by moving the line

int[0,J] jobs;

from the global declarations section to the local declarations section of template
Jobber, we give Jobber1 and Jobber2 each their own, local copy of variable
jobs. The result is that both Jobber1 and Jobber2 have to perform J jobs, instead
of J jobs together.

Uppaal has a rather extensive syntax for the expressions in guards and updates. It
is possible to declare arrays and Boolean variables, and a user can even define record
types and new functions. The syntax for doing this is very similar to the syntax of
programming languages such as C and Java. For an overview of the syntax we refer
to Chapter 2 of this handbook Add ref and to the help menu of Uppaal: click on
Language Reference and then on Expressions.

1.8 Time and clocks

In the design and analysis of real systems, timing aspects often play a role. Some-
times we may abstract from quantitative timing, and only consider the ordering of
events, but often timing information has to be included in the model in order to be
able to answer certain questions. For instance, we may need to establish not only
that a certain location can be reached, but also how fast. In the case of our jobshop,
the following question could arise. Uppaal has been more or less designed to answer
this type of questions.

We suppose that a jobber needs (at least) 5 seconds for an easy job, 10 seconds
for an average job using the hammer, 15 seconds for an average job using the
mallet, and 20 seconds for a hard job. We suppose that the jobs arrive in the
following order: H, A, H, H, H, E, E, A, A, A, where E denotes an easy job, A
an average job, and H a hard job. How much time do the two jobbers need (at
least) to complete the 10 jobs?

1 A First Introduction to Uppaal 21

1.8.1 Modeling the conveyor belt

Before we add timing to our model, we first add an automaton that describes the
behavior of the conveyor belt. The belt was not included in our first model (there
was no reason for adding it) but in order to answer the question about timing, the
order in which jobs arrive appears to be relevant. In order to model incoming jobs,
we declare three new channels jobE, jobA en jobH, which correspond to the arrival
of easy, average, and hard jobs, respectively. The automaton Belt, which is depicted
in Figure 1.14, describes the behavior of the conveyor belt that delivers the 10 jobs in
the specified order. By adding automaton Belt to the model in System declarations

system Belt, Jobber1, Jobber2, Hammer, Mallet;

and by labeling the outgoing transitions of location begin of the jobber automaton
of Figure 1.9 in the obvious way with the synchronization channels jobE?, jobA?
en jobH?, we model that the jobbers have to deal with the specified sequence of 10
jobs.

jobH!

jobE! jobE!jobH!

jobH!

jobH!

start

end

jobA!

jobA!

jobA!

jobA!

Fig. 1.14 Model of conveyor belt that delivers 10 jobs.

1.8.2 Clocks and lower bounds on timing

In the models that we have constructed thus far, time is not modeled explicitly. In
Uppaal we assume that transitions occur instantaneously and do not take time. Time
may only elapse when all automata in the model are waiting in a location. When-
ever we want to model an activity that takes time, we can do this by introducing two

22 Frits Vaandrager

consecutive transitions, one corresponding to the start of the activity, and another
corresponding to the end of it. Often, models only contain transitions that corre-
spond to either the beginning or the end of an activity that has a duration. If we want
to be really precise then, for instance, we could say that the jobH! transition corre-
sponds to the moment when a jobber starts to pick a hard job from the conveyor belt,
the get mallet transition corresponds to the moment when a jobber starts grab-
bing the mallet and the put mallet transition corresponds to the moment when a
jobber ends the activity of putting the mallet back on the table again.

If we want to specify lower and upper bounds on the time that an automaton may
stay in a certain location, we can do this in Uppaal using so-called clocks. A clock
is a special type of variable, whose domain consists of the set of nonnegative real
numbers. Just like other variables, clocks can be declared either as a global variable
(which can be tested and updated by all automata) or as a local variable (which can
only be used by one automaton). In the initial state, all clocks have value 0. When
an automaton is waiting in a location and time elapses then the values of its clocks
increase. More precisely, when t time units pass then the values of all clocks in
the model increase with t. Thus, all clocks are “perfect” and increase at exactly the
same rate as time. In reality, of course, no clock is 100% perfect, but in our modeling
language it is convenient to use the idealization of perfect clocks to specify upper
and lower bounds on the timing of transitions.

x:=0

x>=15

x:=0

x:=0

x>=10

x>=5

x>=20

jobE?

x:=0
begin

average

easy

put_hammer!

put_hammer!

put_mallet!

work_av_hammer

work_hard

hard

work_av_mallet

work_easy

jobA?

get_hammer!

get_hammer!

get_mallet!

jobH?

Fig. 1.15 Model of jobber extended with a clock.

1 A First Introduction to Uppaal 23

Figure 1.15 shows an extension of the jobber model of Figure 1.9 with new syn-
chronization channels jobE?, jobA? and jobH?, and also with a clock variable x.3

Clock x has been declared by adding the following line to the local Declarations
section of template Jobber:

clock x;

When a jobber moves from location easy to location work easy, that is, starts
to work on an easy job, clock x is reset to 0 via an update x := 0. Subsequently,
the guard of the outgoing transition of work easy tests whether x >= 5. In this
way, we enforce that this transition may only occur once the automaton has been
in location work easy for at least 5 time units. This corresponds to our assumption
that a jobber needs at least 5 time units to complete a simple job. In a similar way
we model that the automaton spends at least 10, 15 and 20 time units in locations
work av hammer, work av mallet and work hard, respectively.

In the resulting model, Jobber1 and Jobber2 both have a local clock variable
x that records how long they have been working on a certain job. Each time when
a jobber starts with a new job its local clock is reset to 0. In order to record the
total amount of time that has elapsed, we also introduce a global clock now, which
is never reset. As a result, the global declarations look as follows:

chan jobE, jobA, jobH,
get_mallet, get_hammer, put_mallet, put_hammer;

clock now;

We can ask Uppaal whether there exists a state in which all the 10 jobs have been
delivered and both jobbers have returned to their initial state (that is, all the jobs
have been completed):

E<> (Belt.end && Jobber1.begin && Jobber2.begin)

When Uppaal computes a diagnostic trace which demonstrates that this property
is satisfied, this will, in general, not be the shortest trace. After all, we have only
specified lower bounds for the timing in our model and no upper bounds. Thus the
belt may wait indefinitely before delivering a job, a jobber may dawdle for days
before he starts with the job, and for years before completing it. However, if we
select in the menu Options under Diagnostic Trace the option Fastest, then Uppaal
will produce the fastest execution that leads to the specified state.4 In the simulator
we can see that in the final state of this execution now >= 100. This means that
the jobbers need at least 100 time units to complete the 10 jobs. The easiest way
to understand the schedule that has been computed by Uppaal is via the so-called
“message sequence chart” in the lower right window of the simulator: here we see
which jobber handles which job. Figure 1.16 visualizes this fastest schedule in an

3 Note that this extension is orthogonal to the extension with the integer variable jobs displayed
in Figure 1.13.
4 If there are multiple executions with the same minimal duration, Uppaal will show the first one
that it finds, which is always the same.

24 Frits Vaandrager

Fig. 1.16 Fastest schedule for completing the 10 jobs.

even more compact way as a “Gantt chart”.5 We see that one jobber is permanently
busy with the hammer, whereas the other jobber has a relaxed schedule in which
he is idling most of the time but also completes some jobs with his hands or with
the mallet. It is easy to come up with an equally fast schedule in which the work
load is more evenly distributed. We may decide, for instance, to give the third job to
Jobber2.

1.8.3 Upper bounds on timing

We have seen that lower bounds on timing can be specified with the help of clock
constraints in guards. For example, the constraint x>= 5 in the guard of the transi-
tion from work easy to begin indicates that this transition can only be taken once
the jobber has spent at least 5 time units in location work easy. In practice, we often
need to prove upper bounds on timing: an airbag needs to inflate within a few mi-
croseconds after a collision has been detected, a soccer playing robot must quickly
react when the ball is nearby, etc. In our jobshop example, the following question
may arise:

We suppose that a jobber needs at most 7 seconds for an easy job, 12 seconds
for an average job with the hammer, 17 seconds for an average job with the
mallet, and 22 seconds for a hard job.

How much time do the two jobbers need at most to complete the 10 jobs,
assuming that a jobber picks a new job from the belt as soon as he is ready to

5 Figure 1.16 was constructed manually. Effort is underway to extend Uppaal with a feature for
automatic visualization of traces using Gantt charts. This feature is already present in Uppaal
Tiga, an extension of Uppaal for solving timed games, see http://people.cs.aau.dk/

˜adavid/tiga/.

1 A First Introduction to Uppaal 25

work on it, and that he grabs a tool that allows him to do a job as soon as it
becomes available?

In Uppaal we can specify upper bounds on timing, using so-called “invariants”.
When we double click the location work easy, a window appears with a field In-
variant. By entering x <= 7 in this field, we specify that in this location the value
of x will always be at most 7. In other words, a jobber needs at most 7 time units
to complete a simple job. If more than 7 time units have elapsed then the jobber
has left location work easy. In Figure 1.17 upper bounds of 7, 12, 17 and 22
have been added for locations work easy, work av hammer, work av mallet and
work hard, respectively. In addition, an upper bound of 0 has been added for loca-

x>=15

x>=5

x:=0

x:=0

jobA?

x>=20

jobE?

x>=10
jobH?

x:=0

x:=0
begin

average

easy

x<=22

x<=12

x<=17

work_av_hammer

work_hard

hard

work_av_mallet

work_easy

get_mallet!

put_hammer!

put_hammer!

x<=7

get_hammer!

put_mallet!

get_hammer!

Fig. 1.17 Model of jobber with upper bounds on timing.

tion easy. This models the assumption that when a jobber has picked an easy job
from the belt he starts working on it right away. We could have enforced this upper
bound by resetting clock x upon entering location easy, in combination with an
invariant x<= 0 for this location. But Uppaal supports a simpler way of specifying
the same requirement: if we double click the location easy we can check the field
Urgent. If a location is Urgent then this means that time can not elapse within this
location, and hence a transition to another location will occur immediately.

After all these modifications of the model, it is still not possible to infer an upper
bound on the time need to complete all jobs. The reason is that workers may wait
indefinitely before picking the next job from the belt, and they may wait indefinitely
before grabbing a tool. We have not yet modelled the requirement that jobbers grab

26 Frits Vaandrager

jobs and tools as soon as they can. A convenient way to eliminate idling is by making
the synchronizations for grabbing a job or tool “urgent”. When a synchronization
channel is urgent, this means that whenever a synchronization with this channel is
enabled, time can not advance and a transition has to be taken immediately. We can
specify this in Uppaal by changing the declarations of the channels as follows:

urgent chan jobE, jobA, jobH, get_mallet, get_hammer;
chan put_mallet, put_hammer;

Note that there exists a subtle difference between the use of urgent locations and
urgent synchronizations. If we would make location begin of the jobber template
urgent rather than channels jobE, jobA and jobH, a problem would arise in a state
where a jobber is in location begin but no further jobs are on the belt and hence no
jobE, jobA or jobH synchronizations are offered: in such a state there would be no
possibility for time to progress and there would be a “time deadlock”. Clearly, such
a model is not realistic. Likewise, a time deadlock would arise if we would make
location hard urgent rather than channel get hammer.

Observe that in the model of Figure 1.17, a jobber may spend in between 5 and 7
time units in location work easy. We have not specified in our model any further
information about the time needed to complete an easy job: this choice is fully non-
deterministic. Maybe a jobber usually completes an easy job within 6 time units but
occasionally needs more time when he is tired. Maybe one jobber always completes
a job within 5.731 time units, whereas another jobber always needs at least 6.194
time units. Maybe jobbers will always complete easy jobs within 5.5 and 5.8 time
units, but we have not carried out the exact measurements and want to be on the safe
side. The ability to have nondeterminism in the timing of transitions is an extremely
useful feature of timed automata, which makes it possible to describe systems and
reason about them at a high level of abstraction. We can, for instance, prove opti-
mality of schedules in a setting where the duration of certain tasks is only known
approximately, or we may prove that certain “bad” states can not be reached even
when the timing of some events is not known exactly.

Whereas the Verifier has an option to compute the fastest execution leading to
a certain state, there is no corresponding option to compute the slowest execution.
Nevertheless, we can compute this slowest execution via a few successive approx-
imations. Uppaal can conform our guess that after 200 time units all jobs will be
completed, that is, that the following property is satisfied:

A[] now>=200 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

We even have

A[] now>=150 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

but not

A[] now>=110 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

1 A First Introduction to Uppaal 27

So the jobbers need at most between 110 and 150 time units to complete all the jobs.
By doing a binary search and reducing the size of the interval step by step, we may
infer that the following property is satisfied:

A[] now>=127 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

but the next property is not:

A[] now>=126 imply
(Belt.end && Jobber1.begin && Jobber2.begin)

Hence, the diagnostic trace for the last property gives the slowest possible schedule,
which takes exactly 126 time units. In this schedule, the final transitions from the
jobbers back to the begin state are missing, but these transitions take no time. So
even when the jobbers always start working on jobs as soon as they can, and imme-
diately grab tools whenever they become available, the worst case schedule is still
26 time units slower than the fastest schedule from Figure 1.16. Figure 1.18 visu-
alizes the slowest schedule as a Gannt chart. At time 0, Jobber1 grabs the first

Fig. 1.18 Slowest schedule for completing the 10 jobs.

(hard) job, and Jobber2 grabs the second (average) job. Of course, in any rea-
sonable scenario, Jobber1 would use the hammer and Jobber2 the mallet. But
in the worst case scenario of Figure 1.18, Jobber2 gets the hammer, and hence
Jobber1 has to wait. Until time 78 one jobber is using the hammer while the
other jobber is idling. At the end of the schedule, after Jobber2 has finished job
9, Jobber2 is still working for some time on job 10 using the mallet.

1.9 Parameters and arrays

In this section, we will discuss two useful features of Uppaal, that allow us to de-
scribe our jobshop model more compactly: template parameters and arrays.

28 Frits Vaandrager

1.9.1 Parameters

In the jobshop model, we have defined a single template Jobberwith two instances
Jobber1 and Jobber2. Likewise, we would like to have a single template Tool
with two instances Hammer and Mallet. It is possible to define this in Uppaal
using the notion of Parameters. Parameters can be declared to have either call-by-
value or call-by-reference semantics, that is, a template may have access to either a
local copy of the argument or to the original. The syntax is taken from C++, where
the identifier of a call-by-reference parameter is prefixed with an “&” in the param-
eter declaration. Clocks and channels must always be call-by-reference parameters.

get? taken

put?

free

Fig. 1.19 Generic model of template Tool.

Figure 1.19 shows the definition of the generic template Tool. In the field Pa-
rameters at the top of the Editor tab, we declare the two channel names that are used
as parameters in this template:

urgent chan &get, chan &put

In the System declarations section, we can now define Hammer and Mallet as
instances of Tool:

Hammer = Tool(get_hammer,put_hammer);
Mallet = Tool(get_mallet,put_mallet);

The old templates Mallet and Hammer can be deleted via the Remove template
option in the Edit menu. Our new model has exactly the same behavior (in terms of
global states and transitions) as the old model, but due to the use of parameters the
definition has become shorter.

1.9.2 Arrays

The model of the belt of Figure 1.14 is not easy to extend or reuse: each time we
want to study a new arrival pattern of jobs, we have to redraw the automaton. This
is cumbersome, especially if we want to schedule a batch with a large number (say
hundreds) of jobs. It is also more natural to define the arrival pattern as a data

1 A First Introduction to Uppaal 29

structure rather than as a control structure (automaton). We can describe the job
arrival pattern as a (constant) integer array as follows:

const int E=0;
const int A=1;
const int H=2;

const int J=10;
const int[0,2] jobs[J] = {H,A,H,H,H,E,E,A,A,A};

Uppaal does not support enumerated types and therefore we use 0 to encode easy
jobs (E), 1 to encode average jobs (A), and 2 to encode hard jobs (H). As before, the
integer constant J denotes the total number of jobs in the batch. The one dimensional
constant array jobs specifies the arrival pattern of jobs (which is identical to the
pattern in Figure 1.14). The size of the array equals J (counting from 0 to J−
1) and the range is the set {0,1,2} or equivalently {E,A,H}. Figure 1.20 shows a
generic model for the Belt template that uses the information from the array jobs

to generate the appropriate sequence of jobE!, jobA! and jobH! transitions. The
automaton uses an auxiliary variable

int[0,J] i;

that records the number of jobs that has been delivered thus far. Again, the new
model has exactly the same behavior (in terms of global states and transitions) as
the old model, but due to the use of arrays the definition has become shorter and
easier to reuse.

jobA!

i++

jobH!

jobE!

i<J && jobs[i]==H

i<J && jobs[i]==Ai++

i<J && jobs[i]==E

i++

Fig. 1.20 Generic model of template Belt.

1.10 What is a good model?

After having presented the basic functionality of the Uppaal tool, we want to con-
clude this chapter with some general recommendations for constructing models. To
some extent, building good models is an art. Dijkstra’s motto “Beauty is our busi-
ness” [5] applies to models as well as to programs. Nevertheless, we can state seven

30 Frits Vaandrager

criteria for good models.6 These criteria are in some sense obvious, and any person
with experience in modelling will often try to adhere to them. Often some criteria
are hard to meet and typically several of them are conflicting. In practice, a good
model is often one which constitutes the best possible compromise, given the cur-
rent state-of-the-art of tools for modelling and analysis.

1. A good model has a clearly specified object of modelling, that is, it is clear what
thing the model describes. The object of modelling can be (a part of) an existing
artefact or physical system, but the object may also be a document that informally
specifies a system or class of systems (for instance a protocol standard), and it
may even be a collection of ideas of a design team about a system they construct,
expressed orally and/or by some drawings on a whiteboard.
In the case of our jobshop example, the object of modelling is the informal spec-
ification that is contained in the grey boxes throughout this chapter.

2. A good model has a clearly specified purpose and (ideally) contributes to the
realization of that purpose. Possible purposes include: communication between
stakeholders about a design, a specification of a system, verification of spe-
cific properties (safety, liveness, timing,..), analysis and design space exploration,
code generation, and test generation. A model can be descriptive or prescriptive.
If a model has to serve several distinct purposes then often it is better to construct
multiple models rather than one.
The only purpose of the jobshop models constructed in Sections 1.3 up to 1.7
is to explain the use of the Uppaal tool. The models in Section 1.8 serve the
additional purpose that they help us to answer the timing related questions stated
in the grey boxes.

3. A good model is traceable: each structural element of a model either (1) cor-
responds to an aspect of the object of modelling, or (2) encodes some implicit
domain knowledge, or (3) encodes some explicit additional assumption. Addi-
tional assumptions are for instance required when a protocol standard is incom-
plete (e.g., it does not specify how to handle certain events in certain cases).
Links between the structural elements of the model and the aspects of the ob-
ject of modelling should be clearly documented. A distinction must always be
made between properties of (a component of) a model and assumptions about
the behavior of its environment.
Our jobshop models are traceable: in the text we explain for each element in a
model how it relates to the informal specification.

4. A good model is truthful (or valid): relevant properties of the model should also
carry over to (hold for) the object of modelling. Typically, for each (relevant)
behavior of the object of modelling there should be a corresponding behavior of
the model. In the construction of models often idealizations or simplifications
are necessary in order to allow for the use of a certain modeling formalism or
in order to be able to analyze the model. In these cases, the model may not be
entirely truthful. The modeller should always be explicit about such idealiza-

6 Most of these criteria are described by Mader, Wupper and Boon [11]. We refer to [11] for further
links to related work in the areas of software engineering, requirements analysis, and design.

1 A First Introduction to Uppaal 31

tions/simplifications, and have an argument why the properties of the idealized
model still say something about the artefact. In the case of quantitative models
this argument will typically involve some error margin. In the case of timed au-
tomata models it frequently occurs that a model “overapproximates” reality and
that, due to nondeterminism, certain behaviors that are possible in the model are
not possible for the artefact.
The untimed model of Section 1.7 is certainly truthful to the informal specifica-
tion of Milner listed in the grey box in Section 1.2. However, in the timed model
of Section 1.8 there is at least one idealization that is not entirely realistic. Our
model assumes that it takes no time to grab a job from the conveyor belt. Or more
precisely: that no time elapses between starting to pick a job from the belt and
starting to pick a tool. Since a job consists of both a peg and a block, it is reason-
able to assume that a jobber needs both hands to grab a job from the conveyor
belt. Hence it is not possible to grab a job and a tool simultaneously, and if we
really want our model to be thruthful, we should add extra transitions that corre-
spond to the end of the activity to grab a job, and we should give lower and upper
bounds for the duration of this activity. In the jobshop example the criterion of
thruthfulness collides with our next criterion of simplicity: in order to keep our
model simple we compromised a bit on thruthfulness.

5. A good model is simple (but not too simple). Occam’s razor is a principle partic-
ularly relevant to modelling: among models with roughly equal predictive power,
the simplest one is the most desirable. Hence, the number of states and state vari-
ables should be as small as possible, and the level of atomicity of transitions
should be as coarse grained as possible (but not coarser), i.e., the number of tran-
sitions should be minimal given the intended use of the model. Preferably, things
should be written only once, and one should avoid ugly encodings. Preferably,
the model uses stable, well-defined and well-understood concepts and semantics.
The model of Section 1.9 is almost maximally simple. We would have liked
to simplify the automaton of Figure 1.20 even further so that it only has one
transition instead of three. But this is not possible since Uppaal does not allow
data parameters for synchronization channels.

6. A good model is extensible and reusable, that is, it has been designed to evolve
and be used beyond its original purpose. Typically, if one defines models in
a modular and parametric way this allows for dimensioning, future extensions
and modifications, especially if modules have well-defined interfaces. Ideally, a
model should not just describe the specific system at hand: by appropriate instan-
tiation and dimensioning it should be possible to model a whole class of similar
systems.
Our jobshop model can be extended or reused in several ways: we can easily in-
crease the number of jobbers and tools, modify the sequence of jobs, and modify
the timing parameters. What can not be changed so easily are the assumptions
on which tools can be used for which jobs. The next chapter [] presents a more
generic version of the jobshop model in which variations of these assumptions
can be trivially modified. However, this requires the use of some advanced mod-
elling features, which are explained in [].

32 Frits Vaandrager

7. A good model has been designed and encoded for interoperability and sharing
of semantics. Model-driven development of an embedded system typically leads
to a plethora of models, all presenting different views on and abstractions of
the system. If a model is not somehow linked to other models, its usefulness
will be limited. Ideally therefore, the relationships between all models should be
properly defined, for instance via formal refinement relations.
In this chapter, we have not addressed issues of interoperability and sharing. We
refer to chapters XX and YY add refs of this handbook for a description of
various links between Uppaal and other model based development tools. In a
more realistic version of the jobshop example, in which for instance the jobbers
are replaced by robots, one of the things one could do is to take the schedules
computed by Uppaal and translate these to control programs for the robots. Such
an approach (using Uppaal) is described for instance in [9]. (and Chapter XX?)

Clearly, there are many relationships and dependencies between the criteria. If a
model is traceable, that is, links between the structural elements of the model and
the aspects of the object of modelling are clearly documented, then chances increase
that the model will be truthful. Also, if a model has been set up in a modular way,
then one may apply a divide-and-conquer strategy both for establishing truthfulness
of the model and for analysis.

biosection??

References

1. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, Cambridge, Mas-
sachusetts, 2008.

2. G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In M. Bernardo and F. Cor-
radini, editors, Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures, volume 3185 of Lecture
Notes in Computer Science, pages 200–236. Springer, 2004.

3. E.M. Clarke, E.A. Emerson, and J. Sifakis. Model checking: algorithmic verification and
debugging. Commun. ACM, 52(11):74–84, 2009.

4. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, Mas-
sachusetts, 1999.

5. W.H.J. Feijen, Gasteren A.J.M. van, D. Gries, and J. Misra, editors. Beauty is our business
— A Birthday Salute to Edsger W. Dijkstra, Texts and Monographs in Computer Science.
Springer-Verlag, 1990.

6. O. Grumberg and H. Veith, editors. 25 Years of Model Checking: History, Achievements,
Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer, 2008.

7. K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and analysis of an au-
dio/video protocol: an industrial case study using Uppaal. In Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA,
pages 2–13. IEEE Computer Society, 1997.

8. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, 1985.

9. T. Hune, K.G. Larsen, and P. Pettersson. Guided synthesis of control programs using Uppaal.
Nord. J. Comput., 8(1):43–64, 2001.

1 A First Introduction to Uppaal 33

10. C.A.J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor Wiskunde, 5/1(2):208–210,
June 2000.

11. A. Mader, H. Wupper, and M. Boon. The construction of verification models for embedded
systems. Technical Report TR-CTIT-07-02, Centre for Telematics and Information Technol-
ogy, University of Twente, The Netherlands, 2007.

12. R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,
1989.

13. Wikipedia. List of model checking tools, November 2011. http://en.wikipedia.
org/wiki/List_of_model_checking_tools.

