RTOS versus GPOS:

What is best for embedded
development?

By Paul N. Leroux

Do most embedded projects still need an RTOS?

It is a good question, given the speed of today’s

high-performance processors and the

availability of real-time patches

Speed without the expense
The answer lies in the very nature of
embedded systems, which are often
manufactured by the thousands or even
millions of units. Even a one dollar
reduction in per-unit hardware costs can
save the manufacturer a small fortune.
Many of these systems are cost sensitive,
where the use of multi-gigahertz processors
or a large memory array is not possible. In
the automotive telematics and infotainment
market, for instance, the typical 32-bit
processor runs at about 200 MHz — a far
cry from the 2 GHz or faster processors
now common in desktops and servers. In an
environment like this, an RTOS designed
to extract extremely fast (and predictable)
response times from lower-end hardware
offers a serious economic advantage.

Savings aside, the services provided by
an RTOS make many computing prob-
lems easier to solve, particularly when
multiple activities compete for a system’s
resources. Consider, for instance, a system
where users expect immediate response
to input. With an RTOS, a developer can
guarantee that operations initiated by the
user will execute in preference to other

for Linux, Windows, and

other General Purpose
Operating Systems
(GPOSs).

system activities, unless a more important
activity must execute first (for example, an
operation that protects user safety).

Consider also a system that must satisfy
Quality of Service (QoS) requirements,
such as a device that presents live video.
If the device depends on software for
any part of its content delivery, it can
experience dropped frames at a rate
that users perceive as unacceptable.
From the user’s perspective, the device
is unreliable. But with an RTOS, the de-
veloper can precisely control the order in
which software processes execute, and
thereby ensure that playback occurs at
an appropriate and consistent media rate.

RTOSs are not fair

The need for hard real time — and for
OSs that enable it — remains prevalent
in the embedded industry. For evidence,
consider recent developments in the
Linux world. MontaVista, for example,
has launched an open source project in
an attempt to improve task preemption
in the Linux kernel. Meanwhile, a recent
study conducted by Venture Development
Corporation suggests that lack of real-time

Embedded Computing Design

performance is the biggest impediment to
Linux adoption. The questions are:

[J What does an RTOS have that a GPOS
does not?

[J How useful are the real-time extensions
now available for some GPOSs?

[l Can such extensions provide a reason-
able facsimile of RTOS performance?

Task scheduling

Let’s begin with task scheduling. In a GPOS,
the scheduler typically uses a fairness
policy to dispatch threads and processes
onto the CPU. Such a policy enables
the high overall throughput required by
desktop and server applications, but offers
no guarantees that high-priority, time-
critical threads will execute in preference
to lower-priority threads.

For instance, a GPOS may decay the prior-
ity assigned to a high-priority thread, or
otherwise dynamically adjust the priority
in the interest of fairness to other threads
in the system. A high-priority thread can,
as a consequence, be preempted by threads
of lower priority. In addition, most GPOSs
have unbounded dispatch latencies: the

January 2005/ 35

36/ January 2005 Embedded Computing Design

more threads in the system, the longer it
takes for the GPOS to schedule a thread
for execution. Any one of these factors
can cause a high-priority thread to miss its
deadlines — even on a fast CPU.

In an RTOS, on the other hand, threads
execute in order of their priority. If a
high-priority thread becomes ready to
run, it will, within a small and bounded
time interval, take over the CPU from
any lower-priority thread that may be
executing. Moreover, the high-priority
thread can run uninterrupted until it has
finished what it needs to do — unless, of
course, it is preempted by an even higher-
priority thread. This approach, known as
priority-based preemptive scheduling,
allows high-priority threads to meet their
deadlines consistently, no matter how
many other threads are competing for
CPU time.

Preemptible kernel

For most GPOSs, the OS kernel is not
preemptible. Consequently, a high-priority
user thread can never preempt a kernel call,
but must instead wait for the entire call to
complete — even if the call was invoked
by the lowest-priority process in the
system. Moreover, all priority information
is usually lost when a driver or other system
service, usually performed in a kernel
call, executes on behalf of a client thread.
Such behavior causes unpredictable
delays and prevents critical activities from
completing on time.

In an RTOS, on the other hand, kernel
operations are preemptible. There are still
windows of time in which preemption may
not occur, but in a well-designed RTOS,
those intervals are extremely brief, often
on the order of hundreds of nanoseconds.
Moreover, the RTOS will impose an
upper bound on how long preemption
is held off and interrupts disabled; this
allows developers to ascertain worst-case
latencies.

To achieve this goal, the RTOS kernel
must be simple and as elegant as possible.
Only services with a short execution path
should be included in the kernel itself. Any
operations that require significant work
(for instance, process loading) must be
assigned to external processes or threads.
Such an approach helps ensure that there

is an upper bound on the longest non-
preemptible code path through the kernel.

In a few GPOSs, such as Linux 2.6, some
degree of preemptibility has been added to
the kernel. However, the intervals during
which preemption may not occur are still
much longer than those in a typical RTOS;
the length of any such preemption interval
will depend on the longest critical section
of any modules incorporated into the
kernel (for example, networking and file
systems). Moreover, a preemptible kernel
does not address other conditions that can
impose unbounded latencies, such as the
loss of priority information that occurs
when a client invokes a driver or other
system service.

Avoiding priority inversion
Even in an RTOS, a lower-priority thread
can inadvertently prevent a higher-
priority thread from accessing the CPU
— a condition known as priority inversion.
Generally speaking, priority inversion
occurs when two tasks of differing
priority share a resource, and the higher-
priority task cannot obtain the resource
from the lower-priority task. To prevent
this condition from exceeding a fixed
and bounded interval of time, an RTOS
may provide a choice of mechanisms
including priority inheritance and priority
ceiling emulation. We could not possibly
do justice to both mechanisms here, so let
us focus on a simple example of priority
inheritance.

To begin, we first must look at the
blocking that occurs from synchroniza-
tion in systems, and how priority inversion

“Generally speaking,
priority inversion occurs
when two tasks of
differing priority share a
resource, and the higher-
priority task cannot obtain
the resource from the
lower-priority task.”

can occur as a result. Let us say two jobs
are running, and that Job 1 has the higher
priority. If Job 1 is ready to execute, but
must wait for Job 2 to complete an activity,
we have blocking. This blocking may occur
as a result of synchronization — waiting
for a shared resource controlled by a lock
or a semaphore —or as aresult of requesting
a service.

The blocking allows Job 2 to run until the
condition that Job 1 is waiting for occurs
(for instance, Job 2 unlocks the resource
that both jobs share). At that point, Job
1 gets to execute. The total time that Job
1 must wait may vary, with a minimum,
average, and maximum time. This interval
is known as the blocking factor. If Job 1
is to meet any of its timeliness constraints,
this factor cannot vary according to any
parameter, such as the number of threads
or an input into the system. In other words,
the blocking factor must be bounded.

Now let us introduce a third job that
has a higher priority than Job 2 but a
lower priority than Job 1 (Figure 1). If
Job 3 becomes ready to run while Job 2
is executing, it will preempt Job 2, and
Job 2 will not be able to run again until
Job 3 blocks or completes. This will, of
course, increase the blocking factor of Job
1; that is, it will further delay Job 1 from
executing. The total delay introduced by
the preemption is a priority inversion.

In fact, multiple jobs can preempt Job 2 in
this way, resulting in an effect known as
chain blocking. Under these circumstances,
Job 2 might be preempted for an indefinite
period of time, yielding an unbounded
priority inversion, causing Job 1 to fail
to meet any of its timeliness constraints.
This is where priority inheritance comes
in. If we return to our scenario and make
Job 2 run at the priority of Job 1 during the
synchronization period, then Job 3 will not
be able to preempt Job 2, and the resulting
priority inversion is avoided (Figure 2).

Dueling kernels

GPOSs — Linux, Windows, and various
flavors of UNIX - typically lack the
mechanisms we have just discussed.
Nonetheless, vendors have developed
a number of real-time extensions and
patches in an attempt to fill the gap. There
is, for example, the dual-kernel approach,
in which the GPOS runs as a task on top of
a dedicated real-time kernel (Figure 3).

Any tasks that require deterministic
scheduling run in this kernel, but at a higher
priority than the GPOS kernel. These tasks
can thus preempt the GPOS whenever they
need to execute and will yield the CPU to
the GPOS only when their work is done.

-
Job 1
High = — — — — — — — |
Priority Inversion
Job3
Priority e —— ey
Preemption
Job 2
Low e [==———} ==
Time
N
Figure 1
-
Priority Inheritance (Job 2 = Job 1)
Job1
High _— -
Job3
Pril]rit]' [
Job 2
Low T e ————
Time
N
Figure 2

User Applications

IPC

Real-time Tasks

GPOS Kernel

Real-time Kernel

Figure 3

Embedded Computing Design January 2005/ 37

Unfortunately, tasks running in the real-
time kernel can make only limited use of
existing system services in the GPOS —file
systems, networking, and so on. In fact, if
a real-time task calls out to the GPOS for
any service, it will be subject to the same
preemption problems that prohibit GPOS
processes from behaving deterministically.
As a result, new drivers and system
services must be created specifically for
the real-time kernel — even when equivalent
services already exist for the GPOS.

Also, tasks running in the real-time kernel
do not benefit from the robust Memory
Management Unit (MMU) protected
environment that most GPOSs provide for
regular, non-realtime processes. Instead,
they run unprotected in kernel space.
Consequently a real-time task that con-
tains a common coding error, such as
a corrupt C pointer, can easily cause a
fatal kernel fault. To complicate matters,
different implementations of the dual-
kernel approach use different APIs. In
most cases, services written for the GPOS
cannot be easily ported to the real-time
kernel, and tasks written for one vendor’s
real-time extensions may not run on
another’s real-time extensions.

Modified GPOSs

Rather than use a second kernel, other
approaches modify the GPOS itself,
such as by adding high-resolution timers
or a modified process scheduler. Such
approaches have merit, since they allow
developers to use a standard kernel
(albeit with proprietary patches) and
programming model. Moreover, they
help address the requirements of reactive,
event-driven systems.

Unfortunately, such low-latency patches
do not address the complexity of most
real-time environments, where real-time
tasks span larger time intervals and have
more dependencies on system services
and other processes than do tasks in a
simple event-driven system. For instance,
in systems where real-time tasks depend
on services such as device drivers or file
systems, the problem of priority inversion
would have to be addressed.

38/ January 2005 Embedded Computing Design

In Linux, for example, the driver and
Virtual File System (VFS) frameworks
would effectively have to be rewritten
along with any device drivers and file
systems employing them. Without
such modifications, real-time tasks
could experience unpredictable delays
when blocked on a service. As a further
problem, most existing Linux drivers are
not preemptible. To ensure predictability,
programmers would also have to insert
preemption points into every driver in
the system.

All this points to the real difficulty, and
immense scope, of modifying a GPOS
so it is capable of supporting real-time
behavior. However, this is not a matter of
RTOS good, GPOS bad. GPOSs such as
Linux, Windows XP, and UNIX all serve
their intended purposes extremely well.
They only fall short when they are forced
into deterministic environments they
were not designed for, such as those
found in automotive telematics systems,
medical instruments, and continuous
media applications.

What about an RTOS?

Still, there are undoubted benefits to
using a GPOS, such as support for widely
used APIs, and in the case of Linux, the
open source model. With open source, a
developer can customize OS components
for application-specific demands and save
considerable time troubleshooting. The
RTOS vendor cannot afford to ignore these
benefits. Extensive support for POSIX

APIs — the same APIs used by Linux and
UNIX - is an important first step. So is
providing well-documented source and
customization kits that address the specific
needs and design challenges of embedded
developers.

The architecture of the RTOS also comes
into play. An RTOS based on a microkernel
design, for instance, can make the job of
OS customization fundamentally easier
to achieve. In a microkernel RTOS, only
a small core of fundamental OS services
(such as signals, timers, and scheduling)
reside in the kernel itself. All other
components (such as drivers, file systems,
protocol stacks, and applications) run
outside the kernel as separate, memory-
protected processes (Figure 4).

As aresult, developing custom drivers and
other application-specific OS extensions
does not require specialized kernel
debuggers or kernel gurus. In fact, as user-
space programs, such extensions become
as easy to develop as regular applications,
since they can be debugged with standard
source-level tools and techniques.

For instance, if a device driver attempts
to access memory outside its process
container, the OS can identify the process
responsible, indicate the location of the
fault, and create a process dump file
viewable with source-level debugging
tools. The dump file can include all the
information the debugger needs to identify
the source line that caused the problem,

DEVICE

Figure 4

along with diagnostic information such as
the contents of data items and a history of
function calls.

This architecture also provides superior
fault isolation. If a driver, protocol stack,
or other system service fails, it can do so
without corrupting other services or the
OS kernel. In fact, software watchdogs can
continuously monitor for such events and
restart the offending service dynamically,
without resetting the entire system or
involving the user in any way. Likewise,
drivers and other services can be stopped,
started, or upgraded dynamically, again
without a system shutdown.

A strategic decision

An RTOS can help make complex
applications both predictable and reliable.
In fact, the predictability made possible
by an RTOS adds a form of reliability
that cannot be achieved with a GPOS (if a
system based on a GPOS does not behave
correctly due to incorrect timing behavior,
then we can justifiably say that the system
is unreliable). Still, choosing the right
RTOS can itself be a complex task. The
underlying architecture of an RTOS is
an important criterion, but so are other
factors.

Consider Internet support. Does the
RTOS support an up-to-date suite of
protocol stacks such as IPv4, IPv6, IPsec,
SCTP, and IP filtering with NAT? And
what about scalability? Does the RTOS
support a limited number of processes, or
does it allow hundreds or even thousands
of processes to run concurrently? And
does it provide support for distributed or
symmetric multiprocessing?

GUI considerations
Graphical User Interfaces (GUIs) are
becoming increasingly common in

40/ January 2005 Embedded Computing Design

embedded systems, and those interfaces
are becoming increasingly sophisticated.
Consequently, does the RTOS support
primitive graphics libraries, or does it
provide an embeddable windowing system
that supports 3D rendering, multi-layer
interfaces, and other advanced graphics?
Can you customize the GUI’s look-and-
feel? Can the GUI display and input
multiple languages simultaneously? And
does the GUI support an embeddable
web browser? The browser should have
a scalable footprint, and be capable
of rendering web pages on very small
screens. It should also support current
standards such as HTML 4.01, XHTML
1.1, SSL 3.0, and WML 1.3.

Tool considerations

On the tools side, does the RTOS vendor
offer diagnostic tools for tasks such as
trace analysis, memory analysis, applica-
tion profiling, and code coverage? And
what of the development environment? Is
it based on an open platform like Eclipse,
which lets you readily plug in third-
party tools for modeling, version control,
and so on? Or is it based on proprietary
technology?

On one point, there is no question. The
RTOS can play a key role in determining
how reliable your system will be, how
well it will perform, and how easily it will
support new or enhanced functionality. And
it can support many of the rich services
traditionally associated with GPOSs,
but implemented in a way to address the
severe processing and memory restraints
of embedded systems. ECD

Paul Leroux is a
Technology Analyst
at QNX Software
Systems, where he
has served in various
roles since 1990. His
areas of focus include
OS architecture, high
availability systems,
and integrated
development environments.

For more information, contact Paul at:

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Ottawa, Ontario, Canada K2M 1W8
Tel: 613-591-0931 e Fax: 613-591-3579
E-mail: paull@gnx.com

Website: www.qnx.com

