
Java programming for C/C++
developers

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Getting started .. 2
2. Setting up.. 5
3. Working with the SDK ... 7
4. Introducing the Java language 10
5. Classes and objects ... 21
6. Java classes in depth.. 27
7. Inheritance... 34
8. Wrapup and resources .. 42

Java programming for C/C++ developers Page 1 of 44

Section 1. Getting started

What is this tutorial about?
This tutorial introduces the Java programming language to C and C++ developers. Because
you already know how to program in C/C++, we'll approach many Java programming
concepts by comparison. You will learn a great deal about Java programming by learning
how the Java language is similar to, and different from, C and C++. Overall, the purpose of
this tutorial is to teach you the fundamentals of the Java language and get you programming
quickly.

The creators of the Java programming language borrowed much of its syntax from C and
C++. Because of this, many experienced C/C++ programmers are immediately familiar with
many aspects of Java code, even if they've never programmed in the language before. This
is important because developers with a C/C++ background are able to learn how to program
in Java more quickly than beginning programmers or developers coming from other
languages.

To make the most of your advantage as a C/C++ programmer, it is important to keep in mind
that the differences between the languages are usually more significant than the similarities;
failure to recognize this can result in incorrect code. First of all, C/C++ programmers have to
be cautious when using the features of the Java language that behave differently from their
C/C++ counterparts, such as boolean expressions and default parameter passing by
reference instead of passing by value. Second, C/C++ programmers have to learn how to get
along without many C/C++ language features on which they have previously relied, such as
pointers, global variables, and the preprocessor.

Should I take this tutorial?
This tutorial is geared toward C and C++ programmers. If you already know C or C++ and
want to learn how to program in the Java language, this tutorial is for you. If you don't know C
or C++, but still want to learn the Java programming language, you may want to check the
listings in Resources on page 43 for a tutorial that is better suited to your background.

As far as this tutorial goes, it doesn't particularly matter if you're a C programmer or a C++
programmer; we'll discuss the differences between the C and C++ languages as they come
up. Despite what many people think, C and C++ really are different languages. Many C
programmers have never programmed in C++, and are completely unfamiliar with
object-oriented programming. Likewise, many C++ programmers have learned
object-oriented programming using C++ and are not proficient in a purely C, procedural
programming environment.

What do I need to take this tutorial?
In this tutorial, we'll be compiling and running Java programs, so you'll need a Java
development environment of some kind. There are several integrated development
environments (IDEs) on the market. These are intended to help you develop Java programs
quickly and easily. An even better tool for beginners is the Java Software Development Kit
(SDK), which is a collection of very simple command-line tools for programming on the Java

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 44 Java programming for C/C++ developers

platform.

While you will almost certainly migrate to some other, more advanced Java programming
environment, there are several good reasons to start out using the SDK. First, the SDK
provides a standard implementation of the tools we'll need to compile and run Java
programs. Second, as newer versions of the Java platform are released, Sun's SDK is
usually the first and only up-to-date implementation available. Third, the SDK tools are
simple, low-level command-line tools; using them provides you with a better understanding of
how the Java platform actually works. Last, and perhaps most importantly, the SDK is
available for free from Sun's Java Web site.

The SDK doesn't come with a text editor, so you'll need one of those as well. Any text editor
will do, so long as it can save files in plain ASCII format. For example, on Windows, you can
use Notepad or DOS Edit; on UNIX you can use emacs or vi; and on the Macintosh you can
use SimpleText.

You may also want to download the entire example source now, to make it easier to follow
along with the exercises in this tutorial. See Resources on page 43 for links to download a
Java SDK, a text editor, and the original source code for this tutorial.

Note: Since the purpose of this tutorial is to teach you the Java programming language, you
will not need to compile any C or C++ programs to follow along with the exercises here. We
will make use of C/C++ code from time to time, and you may find it instructive to compare
C/C++ and Java code by running programs, but doing so is not a required exercise for this
tutorial.

Historical background
The C programming language was developed in the early 1970s. C was originally designed
to facilitate the writing of operating systems (OSs) and OS utility programs. At first, it was
almost exclusively associated with UNIX. Later, C became a more generally used application
development language across multiple platforms. In the middle of the 1980s, C became an
official ANSII standard.

The C++ programming language was developed in the early 1980s. C++ was designed to
add object-oriented programming techniques to the C language. Although C++ originally
tended to be associated with systems programming, it has evolved into a mature
programming language that is well-suited for a wide variety of application programming. In
the early 1990s, C++ became an official ANSII and ISO standard.

The Java programming language and platform was developed in the early 1990s. The Java
platform was originally designed to be used in consumer electronic devices (television sets,
handheld devices, toasters, and the like), so the language had to be small, highly-portable,
and efficient. Although the language never really caught on in digital devices, these same
features made it ideally suited for the Internet. The Java language secured its place as an
Internet technology after the Netscape Navigator and Internet Explorer Web browsers began
to support Java applets. Since then, the Java language has continued to evolve and mature
into a platform for enterprise application development.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 3 of 44

About the author
Scott Stricker is an enterprise application developer working in the Business Innovation
Services group, part of IBM Global Services. He specializes in object-oriented technologies,
particularly in Java and C++ programming.

Scott has a Bachelor of Science degree in Computer Science from the University of
Cincinnati. He is a Sun Certified Java 2 Programmer and Developer. Scott may be reached
at sstricke@us.ibm.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 44 Java programming for C/C++ developers

mailto:sstricke@us.ibm.com

Section 2. Setting up

Introducing the SDK
The Java Software Development Kit (SDK) is a group of command-line tools and packages
that you will need to write and run Java programs. The most important of these tools are the
Java compiler (javac.exe), which you use to compile Java programs, and the Java
interpreter (java.exe), which you use to run Java programs. The SDK also includes the
base classes (called the Java platform), which will provide you with the basic functionality
and APIs you'll need start writing applications.

Sun has released an SDK for every one of its five major releases of the Java platform.
Although I recommend that you get the latest version of the SDK (Java 1.4) for this tutorial,
we'll briefly review all the versions.

• Java 1.0 was the first public release of the Java platform. Because many Web browsers
still use this version, many Java applets are still written to be compliant with Java 1.0.

• Java 1.1 represented a vast improvement in the Java platform. Java 1.1 was the first Java
platform stable enough to develop robust Java applications.

• Java 1.2 was such a leap forward for the Java platform that it was officially dubbed Java 2.
This version of the Java platform is specifically well-suited for enterprise application
development.

• Java 1.3 includes support for the Java Naming and Directory Interface (JNDI), Java
Sound, and support for RMI over IIOP. It also includes a new, high performance
just-in-time (JIT) compiler.

• Java 1.4, also known as Merlin, is the latest release of the Java platform. Java 1.4
includes support for XML processing, the Java Cryptography Extension (JCE), the Java
Secure Socket Extension (JSSE), and the Java Authentication and Authorization Service
(JAAS).

Note that Sun's development kit was called the Java Development Kit (JDK) prior to the
release of Java 2. Thereafter, the development kit was officially renamed the Software
Development Kit (SDK).

You can download the Java SDK of your choice for free from Sun's Java Web site (see
Resources on page 43).

Installing the SDK
Once you download the SDK, you'll need to install it on your machine. The installation is
pretty simple -- it should run just like most standard installation programs. If you're given the
option between a typical or custom install, you should choose the typical install. You should
only choose the custom install if you know exactly what you do and do not want to load on
your machine.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 5 of 44

You can download the API documentation for the Java platform separately, as a compressed
file. This is a collection of HTML documents that you can navigate in a standard Web
browser. Since the API documentation is an essential reference that you'll probably use a lot
in the future, you may want to go ahead and get it now.

When you are installing, you'll usually be given the option of installing the source code for the
standard Java platform classes. If you have sufficient memory on your machine, I
recommend that you take this option. These files will give you a chance to look at the
implementation of the classes that make up the Java language and standard APIs. These
classes are particularly well designed and implemented, and you can learn a lot from
studying this code.

After the SDK is installed, you may need to configure it to work on your system. How you
configure the SDK will depend on your operating system and the SDK version you're using.
Complete installation and configuration instructions will be provided when you download the
SDK.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 44 Java programming for C/C++ developers

Section 3. Working with the SDK

Your first Java program
Before we begin talking about the structure and syntax of the Java language, let's just work
with the SDK a little bit. We'll start by using the SDK's command-line tools to compile and run
a Java program. Because the syntax of the Java programming language is very similar to C
and C++, you should be able to follow most of the code in this non-trivial example.

In the next panel, you will find the source code for a Java class called Factorial. The
Factorial class computes the factorial of an integer. As you may recall, the factorial of a
number n is the product of all integers from 1 to n. So, for example, the factorial of the
number 5 is 5 x 4 x 3 x 2 x 1 = 120.

In this exercise, you will pass in a value as a command-line argument and the Factorial
class will attempt to compute the factorial of that number. As in C, command-line arguments
are passed into Java applications as strings, so the Factorial class will attempt to
transform the string argument into a valid integer. If you pass in non-digit characters,
Factorial will generate an exception.

Factorial.java source
Java source files use the java extension, and every Java source code file must have the
exact same name as the class that is defined inside of it. Since our first class is called
Factorial, we need to save it in a file called Factorial.java.

Open your text editor and enter the source below exactly as you see it. When you are done,
save it in a file called Factorial.java. You may save it in any appropriate directory on
your machine. You'll need to go to this directory to use the command-line tools, so make sure
it is convenient for you.

public class Factorial {
public static void main(String[] args) {

if(args.length != 0) {
int num = Integer.parseInt(args[0]);
System.out.println(factorial(num));

}
}

private static int factorial(int fact) {
int result = fact;
if (fact == 0)

return result;
else {

while (fact != 1)
result *= --fact;

}
return result;

}
}

Compiling the program

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 7 of 44

Once you've saved Factorial.java on your machine, you are ready to compile the
program. The Java compiler that comes with the SDK is a command-line application called
javac.exe. To compile a Java source code file, simply pass the name of the .java file to
the javac.exe program. To compile your Factorial program, open a command-line
prompt and change your directory to the location where you saved the Factorial.java
file. Then type this command:

javac Factorial.java

Just like a C or C++ compiler, the Java compiler may generate any number of errors.
Naturally, you'll need to correct all the errors before the Java compiler will successfully
compile the Factorial program. Once the Java compiler is able to successfully compile, it
will generate a class file called Factorial.class. This represents the executable that we'll
run in the Java interpreter.

There are several options you can use with the javac compiler. Type javac -help at the
command line to see a usage message and a list of valid options.

Running the program
The Java interpreter that comes with the SDK is a command-line application called
java.exe. To run a Java bytecode executable, you simply pass the name of the Java
program to the Java interpreter. Be sure that you do not specify the .class extension when
using the Java interpreter. This program expects only class files, so it will produce an error if
you explicitly write the .class extension.

To run your Factorial program, open a command-line prompt and change your directory
to the location where you compiled the Factorial.java file. That's where your bytecode
executable file, Factorial.class, should be. Then type this command:

java Factorial 5

The Java interpreter will try to execute the main() method of the Factorial program. A
Java method is basically the same thing as a C/C++ function. The argument that we
specified on the command line is 5, and the Java interpreter will pass this argument into the
main() method as a parameter -- specifically an array of String objects.

The Java interpreter may report a run-time error, which will usually terminate program
execution. As in C and C++, Java run-time errors are more difficult to debug than
compile-time errors. Since Java programs are executed in a virtual machine (that is, the Java
interpreter) run-time errors can be handled in a graceful way. Whereas C and C++ programs
may simply crash, the Java interpreter will at least report the run-time error that caused
program execution to halt.

There are several options that you can use with the Java interpreter. Type java -help at
the command line to see a usage message and list of valid options.

What you've learned about the SDK
We'll be compiling and running more Java applications in this tutorial, so let's go over the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 44 Java programming for C/C++ developers

process once again. You may need to refer back to this section later.

1. Write your Java source code program in a text editor and save it with a .java extension.
Make sure that your text editor saves the file in plain ASCII format, and make sure that it
supports long file names. You can't save a Java program as a .jav file -- the extension
has to be .java.

2. Compile your program from a command-line prompt, using the javac compiler that comes
with the SDK. For example, for a source code file named Sample.java, you would type
javac Sample.java. If all goes well, a Java class file will be produced. In our example,
this file would be called Sample.class. Remember to always specify the .java
extension when compiling a Java program.

3. Run your program from a command-line prompt, using the java interpreter that comes
with the SDK. For example, to run the Sample program from the previous step, you would
type java Sample. To specify command-line arguments to a Java program, simply type
them after the program name, separated by spaces. Remember to never specify the
.class extension when running a Java program.

4. Errors can occur when compiling or running a Java program. As you know, run-time errors
are more difficult to debug than compile-time errors. When you are new to a language,
however, compile-time error messages can seem very cryptic. Correcting compile-time
errors can be very instructive, but if you can't get any of the examples in this tutorial to
work, try using the example code (in Resources on page 43) instead.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 9 of 44

Section 4. Introducing the Java language

Overview
Now that you have a basic idea of what Java code looks like and how to compile and run it
on your test machine, we can begin to talk more in depth about the structure and syntax of
the Java programming language.

In this section, we'll learn about the Java programming environment and the Java primitive
data types. Because you are familiar with programming in C/C++, and because the Java
language has much in common with these languages, we'll learn by comparison. In the
panels that follow, we'll discuss the fundamental components of the Java platform, describing
each one in terms of its relation to or difference from a similar component underlying the
C/C++ programming framework.

C and C++ execution environments
C and C++ are high-level programming languages; their purpose is to make it easier for
human beings to develop computer programs. Computers cannot understand high-level
languages -- they can only understand low-level machine languages. A machine language
consist of a sequence of binary instructions that can be directly executed on a computer's
processor. For this reason, programs written in high-level languages must be translated into
machine language programs, which are called executables, before they can be run on a
computer.

Two methods are available for translating a high-level programming language into machine
language executables: compilation and interpretation. Compilation involves translating an
entire high-level program into a whole machine language program, which can then be
executed in its entirety. Interpretation involves translating a high-level program into machine
instructions line-by-line; one line is translated and executed before the next line is reached.
Compilation and interpretation are logically equivalent, but compiled programs tend to
execute faster than interpreted programs.

C and C++ programs are compiled into machine language executables by a program called a
compiler. C compilers and C++ compilers are different. A C compiler can compile C source
code files but not C++ source code files. Since C is retained as a subset of C++, a C++
compiler can compile both C and C++ programs.

Different computers use different machine languages. An executable that runs on one
machine will not run on another machine that uses a different machine language. In order to
run on different computers, a C or C++ source code file must be recompiled on different
compilers; one for each type of machine, or platform, on which the executable will be run.

The Java execution environment
Like C and C++ programs, Java programs are compiled. Unlike C and C++ programs, Java
programs are not compiled down to a platform-specific machine language. Instead, Java
programs are compiled down to a platform-independent language called bytecode. Bytecode
is similar to machine language, but bytecode is not designed to run on any real, physical

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 44 Java programming for C/C++ developers

computer. Instead, bytecode is designed to be run by a program, called a Java virtual
machine (JVM), which simulates a real machine.

Simply put, the JVM is an interpreter that translates Java bytecode into real machine
language instructions that are executed on the underlying, physical machine. More
specifically, the term Java virtual machine is used generically to refer to any program that
executes Java class files. The Java interpreter program, java.exe, is a specific JVM
implementation. The Java Runtime Environment (JRE) is another example of a JVM
implementation.

The Java platform uses the virtual machine layer to ensure that programs written in the Java
language are platform independent. Once a Java program is compiled down to bytecode, it
can be run on any system that has a JVM. Whereas a C or C++ program must be recompiled
for each platform on which it is to be executed, a Java program needs to be compiled only
once; it can then run on any machine that has a JVM installed.

Comparison of execution environments
Let's say you're going to write an application and you want it to run on three platforms:
Windows, UNIX, and Macintosh. If you're writing the code in C or C++, you're going to have
to compile your code three times, using the correct compiler for each of the three platforms.
Of course, this is assuming that you can use the same code base without modification for
each compiler. Very often, you'll need to modify your code to get it to compile, because you
will probably use different APIs for each platform. In other words, you might have to write
three different versions of your source code, one for each target platform.

Now, let's say you choose to write your application using the Java platform. In this case, all
you have to do is write the Java code and compile it once. Since each of the three target
platforms has a JVM implementation, you can run the same compiled bytecode on all of
them, without modification. It doesn't matter if you compile the Java code on a Windows
machine, a UNIX machine, or a Macintosh; it will run on any platform with a JVM.

The figure below illustrates how a program is compiled and executed in both the Java
programming environment and a C/C++ environment:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 11 of 44

Primitive data types
Many of the primitive data types defined by the Java programming language have names
that are the same or similar to the fundamental data types defined in C. Despite the similarity
in their names, all of the Java primitives are different from their C/C++ equivalents.

In general, C and C++ do not define strict sizes for their fundamental types. In other words,
most of the aspects of the C/C++ fundamental types are defined by the compiler, so different
compilers often represent fundamental types in different ways. You are forced to deal with
this issue if you want your C/C++ code to be portable.

The Java programming language, on the other hand, guarantees the size, range, and
behavior of its primitive types. No matter what Java compiler you use, the primitive data
types will always be represented in the exact same way. This effectively isolates you from
the details of the compiler's implementation.

// C char examples
char letterJ = 'J';
char letterA = 'A';
char letterV = '\126';
char digit0 = '\x030k';
char digit1 = '1';

The char types
Both the C and Java languages have a char type,
which is used to represent characters. Although
these types have the same names and uses, they
are represented in completely different formats.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 44 Java programming for C/C++ developers

char digit2 = '2';

// Java char examples
char letterJ = 'J';
char letterA = 'A';
char letterV = '\u0056';
char digit0 = '\u0030';
char digit1 = '1';
char digit2 = '2';

The C char type is used to hold a character. The
compiler determines the character set and the size
of the values that are stored in the char type.
Typically, the C char type represents an ASCII
character, and uses 8 bits (including the sign bit),
yielding a range of values from -128 through 127.
Because there is no standard, however, many
problems can arise from using the C char type,
which causes many portability issues.

The Java char type is also used to store a
character, but in this case the language strictly
defines the character set and size of the char
type. A Java char represents a character from the
Unicode character set, and is stored in 16 bits (with
no sign bit), yielding a range of 0 through 65,536.
As in C, character literals are written within single
quotes.

The Unicode character set is capable of
representing most of the characters used in the
world's major written languages. You can encode a
Unicode character in an ASCII file using the \u
escape sequence, followed by a hexadecimal
number representing a Unicode character. See
Resources on page 43 to learn more about the
Unicode specification.

Character escape sequences
As in C, Java characters and strings can use escape sequences to represent special
characters. Most of these escape sequences are the same as those defined in C, but not all
C escape sequences are valid Java escape sequences. The following table shows the valid
Java escape sequences that are inherited from C:

Escape sequence Character value

\b Backspace

\t Horizontal tab

\v Vertical tab

\n New line

\b Backspace

\f FormFeed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 13 of 44

In addition to the sequences above, C and C++ also define the alert (\a), question mark (?),
and hexadecimal and octal number escapes (\xhhh and \ooo respectively). These are not
valid Java escape sequences.

// C integers
long int val_1 = 250000;
long val_2 = 0x36B;
int val_3 = -1800;
short int val_4 = 017;
short val_5 = -25;

// Java integers
long val_1 = 250000;
long val_2 = 0176;
int val_3 = 0x3F;
short val_4 = -93;
short val_5 = 25;
byte val_6 = 120;
byte val_7 = -34;

Java and C integer types
Both C and Java define an integer type named
int. In addition, the Java language also defines
the long and short types, which originate from
the type modifiers of the same names in C and
C++. The Java integer type byte has no
counterpart in C. You can write Java integer values
as octal or hexadecimal numbers using the same
format as C/C++. Octals start with a 0 and
hexadecimals start with a 0x.

The int type in C is used to store a signed whole
number value. The exact size of the int type is
specified by the compiler, but in general the int
type is 16 bits (including a sign bit), yielding a
range of -32,768 through 32,767.

The Java int type is also used to store a signed
whole number. The Java language strictly defines
the size of the int type as 32 bits (including a sign
bit), yielding a range of -2,147,483,648 through
2,147,483,647.

The C and C++ languages define a set of type
modifiers, which have an effect on the way the
compiler stores an int value. The long modifier
usually forces the compiler to use 32 bits to
represent an int, and the short modifier usually
forces the compiler to use 16 bits to represent an
int. C also defines the signed and unsigned
modifiers, which have no counterpart in the Java
language; Java integers are always signed values.

The Java long type is used to store a signed
whole number using 64 bits (including a sign bit),
yielding a range of -9,223,372,036,854,775,808
through 9,223,372,036,854,775,807. The Java
short type is used to store a signed whole
number using 16 bits (including a sign bit), yielding
a range of -32,768 through 32,767. The Java
language also defines the byte type, which is
used to store a signed whole number using 8 bits
(including a sign bit), yielding a range of -128
through 127.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 44 Java programming for C/C++ developers

// C floating-points
float val_1 = 0.25f;
float val_2 = 12.4901f;
float val_3 = 25.138e-10f;
double val_4 = 0.123456789;
double val_5 = 1.9876540e5;
double val_6 = 0.000001234;

//Java floating-points
float val_1 = 0.25f;
float val_2 = 12.4901f;
float val_3 = 25.138e-10f;
double val_4 = 0.123456789;
double val_5 = 1.9876540e5;
double val_6 = 0.000001234;

The floating-point types
Both C and Java define floating-point types named
float and double, which represent single- and
double-precision floating-point values, respectively.
Java floating-point types are, however, represented
in a completely different format from their C/C++
counterparts. As in C, Java floating-point values
can be represented with an exponential portion.

The float type in C is used to store a signed
floating-point number value. The exact size of the
float type is specified by the compiler, but in
general the int type is 32 bits (including a sign
bit), yielding a range of approximately -34.4E-38
through 3.4E+38. The float type can generally
be used safely to store values of six to seven digits
of precision.

The Java float is also used to store signed
floating-point number values, but the language
specifies that 32 bits (including a sign bit) are
always used to store IEEE 754 floating-point
values. Floating-point literals are assumed to be of
type double, so if you specify a float literal you
need to append the letter f or F.

The double type in C is used to store a signed
floating-point number value. The exact size of the
double type is specified by the compiler, but in
general the double type is 64 bits (including a
sign bit), yielding a range of approximately
-1.7E-308 through 1.7E-308. The double type can
generally be used safely to store values of 14 to 15
digits of precision.

The Java double is also used to store signed
floating-point number values, but the language
specifies that 64 bits (including a sign bit) are
always used to store IEEE 754 floating-point
values. Floating-point literals are always assumed
to be of type double, but you can append the
letter d or D if you wish.

// C boolean
bool on = true;
bool off = false;
bool yes = 0;

The boolean types
Both the C++ and Java languages have boolean
types, which are called bool and boolean,
respectively. Although these types have similar

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 15 of 44

bool no = 1;

// Java boolean
boolean on = true;
boolean off = false;
// This is illegal
boolean yes = 1;
// This is illegal
boolean no = 0;

names and uses, they are represented in
completely different formats.

Later implementations of C++ include a new bool
type, whose values are represented by the new
keywords true and false. In actuality, the bool
type is represented as an int, and true and
false correspond to 1 and 0 respectively. You
can use int values and bool values
interchangeably; 0 is converted to false, and all
other number values are converted to true.

The Java language defines the boolean type,
whose values are represented by the true and
false literals, which are the only valid values of
the Java boolean type. Unlike the C++ bool type,
the boolean type cannot be converted to or from
the int type. In fact, the only valid conversion for a
boolean value is to or from another boolean
value.

In Java programs, you cannot use int type values
or expressions in place of boolean type values or
expressions. For example, if you use an int in an
if statement, which evaluates a boolean
expression, the Java compiler will generate an
error. This is a major change from C and C++, both
of which use int values in logical expressions.

Operators
You will probably be happy to learn that the Java language defines the same arithmetic and
logical operators that C and C++ define, and their behaviors are very nearly always
comparable. The only notable exception is that the Java + operator is overloaded so that it
can concatenate String objects. If you use the + operator with a String and another
operand that is not a String, the other operand is converted into a String. For example

"To be, " + "or not to be." // results in "To be, or not to be."
1 + "2" + 1 // results in the new String "121"

Java operators will return different results than their C/C++ equivalents in a number of cases.
For example, the Java divide operator (/) will generate an exception if you try to divide an
integer by zero. Also, the Java language defines positive and negative zeros, positive and
negative infinities, and not-a-number values (java.lang.Float.NaN and
java.lang.Double.NAN). No floating-point operations produce an exception -- one of
these values is returned instead.

Positive zero and negative zero compare equal, but other operations distinguish between
positive and negative zeros. So, 1.0/0.0 results in positive infinity and 1.0/-0.0 results in
negative infinity. But the expression 0.0==-0.0 is true and the expression 0.0>-0.0 is
false. Because NaN is unordered, all of the comparison operators will return false if either

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 44 Java programming for C/C++ developers

operand is NaN, except for !=, which will always return true if either operand is NaN.

Note: In C++, you can overload operators when you define a class. For example, if you write
a class to represent a matrix, you can overload the + operator so that it can perform matrix
addition correctly on two matrix objects. The Java language does not allow programmers to
overload any operators.

// C/C++ functions
// A Java method
void funct(void) {
//implementation
}

void funct() {
//implementation
}

void funct()
{
//implementation
}

C/C++ functions versus Java
methods
C and C++ allow you to define functions. In C++,
you can define functions as members of a class. In
Java terminology, functions are called methods.
Methods can only be declared as members of a
class; you can't define a method outside of a Java
class.

Both C and C++ allow you to use the void
keyword as the return type of a function that does
not return a value. The Java language uses the
void keyword for the exact same purpose; when a
Java method returns no value, its return type is
declared to be void. In C and C++, you can define
a function that takes no parameters in one of two
ways: by using empty parentheses or by using the
void keyword in between parentheses. The Java
language does not allow you to use the void in
this way; any Java method that accepts no
parameters must be declared with empty
parentheses.

C and C++ allow you to define functions that take a
variable-length parameter list, by using the ellipses
(...) notation. The Java language does not
provide this facility, nor is there a replacement for
this feature. In general, passing in an array
parameter can serve a similar purpose.

Arrays
Java arrays are similar to C arrays, but there are important differences between them. Java
arrays are objects, so they are declared using the new operator. Since Java arrays are
objects, they have attributes, the most important of which is the length attribute, which you
can use to determine the size of the array. Also, the bracket characters ([]) that are used
to indicate arrays are bound to the array type, not the array name. Array literals look the
same in both languages, as you can see below.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 17 of 44

// C/C++ arrays // Java arrays
int scores[100]; int[] scores = new int[100];
char grades[] = {'A', 'B', 'C'}; char[] grades = {'A', 'B', 'C'};
int table[2][2] = {{1, 2},{3, 4}}; int[][] table = {{1, 2},{3, 4}};

The Java interpreter guarantees that an array will not be accessed outside of its bounds. If
you try to read an array index outside of the array's actual size, the Java interpreter will throw
a java.lang.ArrayIndexOutOfBounds exception.

Strings
C uses a null-terminated sequence of char values to represent strings. Java strings are
represented by objects of the String class. Both C and Java string literals are represented
as a sequence of characters enclosed in double quotes.

There are two ways to make a String object: you can use a string literal, or you can use a
constructor. String objects are immutable, which means that once a String is given an
initial value it cannot be changed. In other words, if you want to change the value of a
String reference, you need to assign the reference a new String object.

Since Java strings are objects, you interact with them through the interface defined by the
String class. The String class has a rich interface, with quite a few useful methods.
Some of the most commonly used methods are demonstrated in the code below. Consult the
API documentation for a detailed description of the String class and all the methods it
defines (see Resources on page 43).

/*
* The StringTest class simply demonstrates
* how Java Strings are created and how
* String methods can be used to create
* new String objects. Notice that when you
* call a String method like toUpperCase()
* the original String is not modified. To
* actually change the value of the original
* String, you have to assign the new
* String back to * the original reference.
*/
class StringTest {

public static void main(String[] args) {
String str1 = "Hi there";
String str2 = new String("Hi there");

System.out.println(str1 == str2);
System.out.println(str1.equals(str2));

System.out.println(str1.toUpperCase());
System.out.println(str1.toLowerCase());
System.out.println(str1.substring(1,4));
System.out.println(str1.trim());

System.out.println(str1.startsWith("Hi"));
System.out.println(str1.endsWith("there"));
System.out.println(str1.replace('i', 'o'));

}
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 44 Java programming for C/C++ developers

The main() method
Like C and C++, Java applications must define a main() method in order to be run. In Java
code, the main() method must follow a strict naming convention. All main() methods must
be declared as follows:

public static void main(String[] args)

Note: Actually, you can reverse the public and static modifiers, and the String array
can be named anything you like. Note, however, that the above format is conventional.

Passing arguments to the main() method
Command-line arguments are passed into a Java application as parameters to the main()
method, just as they are in C. Instead of coming in as a char array like argv, however,
arguments come into Java programs as an array of String objects. Because you can
determine the length of a Java array, there is no need for an int parameter such as C's
argc. Also unlike C, the first element in the array (at index 0) is the first argument, not the
name of the program.

The C and Java main() methods below are similar. They both take the command-line
arguments and print them back to the screen. Note the differences between them.

// A C main() function // A Java main() method
void main(int argc, char* argv[]) public static void main(String[] args) {
{ {

int i;
for(i=0; i<argc; i++) for(int i=0; i<args.length; i++)

printf("%d: %s\n", i, argv[i]); System.out.println(i +": " + args[i]);
} }

Other differences
We've gone over the major syntactic differences between Java and C/C++. What remains is
a handful of lesser differences, which are briefly outlined below.

• Pointers: The Java language does not include pointers. The reason for this is simple:
pointers tend to cause confusion in the code, and they are a common source of bugs. Java
references are pointers to Java objects, but you can't use Java references in the same
way that you can use C pointers. Java references cannot be incremented or decremented,
you can't convert references to or from primitive types, and there are no address of
operators, such as &, or dereferencing operators, such as -> or *.

• Global variables: Unlike C and C++, the Java language offers no way to declare global
variables (or methods).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 19 of 44

• The preprocessor: The Java platform does not have a preprocessor, nor does it have any
preprocessor directives or macros.

• goto: Although the Java language reserves goto as a keyword, there is no goto
statement like the one used in C.

• struct, union, typedef, enum: The Java language does not have the struct or union
types, nor does it have the typedef or enum keywords.

• Freely placed variables: Java variables can be declared anywhere, as they are needed.
Variables do not need to be grouped together at the top of a block, as they do in C.

• Freely placed methods: C requires that function declarations appear before they are
invoked, but Java methods can be invoked before they have been declared.

• Garbage collection: The Java platform uses a garbage collector to automatically reclaim
memory by recycling objects when they are no longer referenced. The malloc() and
free() functions used by C aren't necessary in Java programming, and no similar
methods exist for the Java language.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 44 Java programming for C/C++ developers

Section 5. Classes and objects

Introduction to object-oriented programming
The Java programming language is object oriented. Because it uses syntax that is generally
very similar to C++, Java classes and objects are generally easy to learn if you come from a
C++ background. If you come from a C programming background, however, you may know
very little about object-oriented programming. In this section we'll start off with a brief,
C-based introduction to object-oriented programming. Next, we'll build a simple bank account
application, starting with a C implementation, migrating to a C++ implementation, and
finishing the section with a Java implementation. Each implementation will build on the one
before it, which should leave you with a good grasp of both the advantages and
shortcomings of each language used.

Working with classes
You can think of a class as a data type that is defined by a programmer. Variable instances
of a class are called objects. Like other variables, objects have a type, a set of attributes, and
a set of operations. The type of an object is represented by the class from which the object
was instantiated. The attributes of the object represent its value or state. The operations of
an object are the set of possible functions that can be invoked on an object in order to
change its state.

Consider C's int fundamental data type, which represents an integer. This type's name, of
course, is int, and you use this type name to create variables that are instances of an
integer. Every int variable has one attribute, which represents the integer number that the
variable holds. Every int variable also has the same set of operations, which you can use to
change the state (or value) of the variable. Some examples of the operations that can be
performed on an int variable include: addition (+), subtraction (-), multiplication (*),
division(/), and modulo (%).

An account struct
Now, let's examine a situation where you might want to develop your own type, which will
represent a complex object that the C language doesn't support as a fundamental type.
Suppose you are part of a team developing software for a financial institution, and your job is
to develop code to represent a typical bank account. A bank has several accounts, but each
account has the same basic set of attributes and operations. In particular, an account has a
balance and an ID number. (Different types of accounts have different attributes and
operations, but we'll keep this example both general and simple.)

Now, if you're programming in C, how do you go about creating a new Account module to
represent a bank account in your program? You can represent an account's attributes by
using a float variable for the balance, and an int variable for the ID number. But we need
to group these variables together to create a single coding module or structure. The obvious
way to do this is to use a struct, as shown below.

struct Account

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 21 of 44

{
float balance;
int id;

};

Account functions
The valid operations for an account are depositing an amount and withdrawing an amount. C
provides a built-in way to define operations, namely functions. We can create two functions
that implement these operations, called deposit() and withdraw(), as shown below.
(Naturally, you can't withdraw an amount of money that is greater than the balance of the
Account, so the withdrawal operation should not change the account balance at all if an
attempt is made to overdraw the account.)

void deposit(struct Account *account, float amount)
{

(*account).balance += amount;
}

void withdraw(struct Account *account, float amount)
{

if((*account).balance >= amount)
(*account).balance -= amount;

}

Grouping operations with data
Although you can use the C struct to group data, a struct can only have data members.
Functions cannot be members of a struct. This leaves us with a problem, because we'd
like to group our Account operations with our Account struct.

One solution is to use function pointers. We can include function pointers as members of the
Account struct, and use these pointers to invoke the correct Account operations.

To use function pointers, we need to initialize them so that they point to the correct functions.
One way to do this is to write a special initialization function, which will construct a new
Account struct. Such a function is called a constructor. Besides initializing the function
pointers, we can also use this constructor function to give the Account an initial state. In
particular, we can pass in the account ID and an initial balance.

After initialization, the account ID will never change, and the balance will only be changed by
the deposit() and withdraw() functions. Of course, the id and balance members can
be accessed directly, so their values can be changed directly. Unfortunately, there is no way
to limit the access to the members of a C struct.

In the next panel, Account.c shows a C implementation of an Account struct.

Account.c

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 44 Java programming for C/C++ developers

#include <stdio.h>

void depositAmount(struct Account*, float);
void withdrawAmount(struct Account*, float);

struct Account {
float balance;

int id;
void (*deposit)(struct Account*, float);
void (*withdraw)(struct Account*, float);

};

struct Account initAccount(int id, float new_balance) {
struct Account account;
account.balance = new_balance;
account.id = id;
account.deposit = &depositAmount;
account.withdraw = &withdrawAmount;
return account;

}

void depositAmount(struct Account *account, float amount) {
(*account).balance += amount;

}

void withdrawAmount(struct Account *account, float amount) {
if((*account).balance >= amount)

(*account).balance -= amount;
}

Using the Account
Next, let's take a look at how we can use the Account struct. Here's an example of a
main() function, which shows how an Account is created and used.

void main(int argc, char* argv[])
{

struct Account my_account = initAccount(1002552, 5000.00);
my_account.deposit(&my_account, 2000);
printf("Balance: %f\n", my_account.balance);
my_account.withdraw(&my_account, 3000);
printf("Balance: %f\n", my_account.balance);
my_account.withdraw(&my_account, 6000);
printf("Balance: %f\n", my_account.balance);

}

First, we create an Account instance using the initAccount() function. Because we
pass in 1002552 and 5000.00, the Account will have an ID of 1002552 and an initial
balance of $5000.00.

Next, we use the deposit function pointer to call the depositAmount() function. We pass
in $2000.00, so when we print out the balance in the next line, it will be $7000.00. Next, we
use the withdraw function pointer to call the withdrawAmount() function. We pass in
$3000.00, so when we print out the balance in the next line, it will be $4000.00. Finally, we
try to withdraw another $6000.00, but because this amount is larger than the account's total
balance, the withdrawAmount() function does nothing.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 23 of 44

Benefits of objects
A class is more than just a C struct with functions. There are a great many other features
of classes that we can't easily simulate in C. Here are three of the primary benefits of using
classes and objects:

• Encapsulation or information hiding refers to a way of treating an object like a "black
box," which means that you can use an object without knowing (or caring) how it is
implemented. Using objects through the interface defined by the methods (operators)
defined in the class ensures you can change the class implementation without breaking
any code that uses objects of that class.

• Polymorphism refers to the ability to associate different features to the same name,
together with the ability to choose the right feature based on context. The most common
example of polymorphism is method overloading, whereby you can define several methods
that have the same name, as long as they take different parameters.

• Inheritance refers to reusing code by writing new classes that extend an existing class.
For example, let's say you wanted to write a new class to represent a checking account.
Since a checking account is a special kind of bank account, you could write the
CheckingAccount class so that it extended (or subclassed) the Account class. Then,
the CheckingAccount class would automatically get the state and all the operators
(functions) of the Account class. You would only need to add the new state and operators
specific to the CheckingAccount class. For example, you might add a cashCheck()
function to perform the operation of cashing a check that was written for the checking
account. If required, you could also change the inherited state or behavior of the subclass.
For example, a user might be allowed to overdraw on his checking account, so you would
need to override the withdrawal function.

Defining a C++ class
Now, let's code a real C++ class that represents an Account. Even if you're not an
experienced C++ programmer, you can see that the Account class is very similar to our
Account struct. The source code for Account.cpp will be shown in the next panel.

Notice that a class has data and function members, and each member has either public or
private access. As you might guess, public members can be accessed outside of the
class, while private members can be accessed only inside of the class definition. Since the
balance field is private, we need a special getter function, called getBalance(), which
we can use to query the state of the balance. Notice, however, that you can't directly access
or change the balance variable outside of the class. We can only change the balance
using the deposit() and withdrawal() functions. If you try to access the balance
member outside of this class using account.balance, the compiler will generate an error.

Also notice the special function called Account. This is a special constructor function, similar
to our initAccount(), which we use to initialize new Account objects. Note that a
constructor always has the same name as the class does, and that it does not declare a
return type. We use the constructor to set the initial balance of the Account.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 44 Java programming for C/C++ developers

Finally, let's look at the main() function and see how we can use our Account class. First,
we declare an Account object, called account. We implicitly call the constructor by
following the account name with parentheses containing the initial balance. Now we can
call the deposit() and withdrawal() functions to change the balance of our account.
When we want to print the balance of the account, we use the getBalance() function.
We can't get the balance directly, using account.balance, because it is a private member.

Account.cpp

class Account {
private:

double balance;

public:
Account(double start_balance) {

balance = start_balance;
};

void deposit(double amnt) {
balance += amnt;

};

void withdrawal (double amnt) {
if (balance >= amnt)
balance -= amnt;

};

double getBalance() {
return balance;

};
};

void main(void)
{

Account account(5000.00);
account.deposit(2000.00);
printf("Balance: %f\n", account.getBalance());
account.withdrawal(4000);
printf("Balance: %f\n", account.getBalance());

}

Defining a Java class
We'll close this section by implementing the Account class in the Java language. The
source for Account.java will be shown in the next panel. As you will see, defining a Java
class is very similar to defining a C++ class. The major differences are as follows:
• The public and private keywords are modifiers, not labels. Each member must have

its own public or private modifier.

• You don't use semicolons (;) after the closing brackets in class and method definitions.

• The main() method is a member of the class -- all Java methods must be members of a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 25 of 44

class. Unlike the C++ example, you can access the private members of the Java Account
class in the main() method, because it is a member of the class.

• You call the Account constructor using the new keyword, followed by the name of the
class and the parameterized list of arguments for the constructor.

Account.java

class Account {
private double balance;

public Account(double balance) {
this.balance = balance;

}

public void deposit(double amnt) {
balance += amnt;

}

public void withdrawal (double amnt) {
if (balance >= amnt)

balance -= amnt;
}

public double getBalance() {
return balance;

}

public static void main(String[] args)
{

Account account = new Account(5000.00);
account.deposit(2000.00);
System.out.println("Balance: " + account.getBalance());
account.withdrawal(4000);
System.out.println("Balance: " + account.getBalance());

}
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 44 Java programming for C/C++ developers

Section 6. Java classes in depth

Overview

Having discussed the general role of classes and objects in an object-oriented
programming framework, we're ready to delve more deeply into the specifics of the
Java platform's class structure and implementation.

In this section, we'll talk about the following:

• Class members: A class member is always either a field or a method. A field
represents data, and a method represents operations. Classes can define any
number of members.

• Access modifiers: Class members are declared with access modifiers, which
specify the accessibility of the member outside of the class in which it is defined. For
example, members that are declared private cannot be accessed at all, but
public members are freely accessible.

• Objects: Classes are really just definitions. What we really use in code are class
instances, and these are called objects. We'll learn how to create objects from
classes.

• Constructors: A constructor is a special operator that is used to create objects. In
general, a class is not of much use if you can't create objects of that class.
Constructors are very important because they provide the ability to create new class
instances.

• The 'this' keyword: Java objects implicitly reference themselves. It is important that
you understand how to use the this keyword for this purpose.

Class members

A Java class is an independent module of code that defines attributes and operations
in terms of members. Java classes have four kinds of members: fields, methods, inner
classes, and inner interfaces. We'll talk here about the first two member types, leaving
the discussion of inner classes and interfaces to the section on inheritance.

A field is a variable declared inside of a class. Java fields come in two varieties:
instance variables and class variables. Instance variables are associated with each
instance of a class, and each instance has its own copies of instance variables. Class
variables, which are declared using the static keyword, are associated with the class
as a whole, and the class shares a single class variable with all class instances. For
example, the balance field in a BankAccount would be an instance field because

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 27 of 44

each BankAccount instance has its own balance, which is independent of every
other Account object's balance. On the other hand, the interest field would be
declared as a class field because every BankAccount object uses the same interest
rate, which is the same for every BankAccount object.

A method is a function declared inside of a class. Java methods also come in two
varieties: instance methods and class methods. Every class instance gets its own copy
of instance methods, but there is only one copy of a class method, which is shared
among all class instances. Class methods are declared using the static keyword.
Instance methods are used to operate on instance variables and class methods are
used to operate on class variables. For example, a deposit() method in our
BankAccount class would be an instance method because each BankAccount has
its own balance field, which the deposit() method would change. The
setInterest() method would be declared as a class method because every
BankAccount shares a single interest field, which the setInterest() method
would change.

One final word about class members. Instance members (that is, instance variables
and instance methods) are accessed, using the dot (.) notation like that of a C
struct, using an object name. Class members (that is, class variables and class
methods) are accessed using a class name.

BankAccount.java

The program below, called BankAccount, has five members. Two members are fields:
balance, which is an instance field, and interest, which is a class field. Three
members are methods: deposit() and withdraw() are instance methods and
setInterest() is a class method. Notice that you use an object name to access
instance members, and the class name to access class members.

class BankAccount {
float balance; // an instance field
static float interest; // a class, or static, field

// an instance method
void deposit(float amount) {

balance += amount;
}

// an instance method
void withdraw(float amount) {

balance -= amount;
}

// a class, or static, method
static void setInterest(float interestRate) {

interest = interestRate;
}

public static void main(String[] args) {

// create a new account object

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 44 Java programming for C/C++ developers

BankAccount account = new BankAccount();
// deposit $250.00 into the account
account.deposit(250.00F);
// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

Access modifiers

Like C++, the Java language allows you to set the visibility of a class member. Java
members use the public modifier to indicate that a member is freely accessible, both
inside of the class and outside. Java members use the private modifier to indicate
that the member is only accessible inside of the class. Outside of the class, private
members are inaccessible.

Let's consider our BankAccount class again. We want programmers using
BankAccount objects to change the balance by using the deposit() and
withdraw() methods. We'll declare these methods to be public, so they can be
invoked in code outside of the BankAccount class. We do not, however, want
programmers to change the balance field directly, so we'll make the balance field
private.

You might be wondering what the default access level is. That is, what is the access
level for a class member that is not declared using the public or private modifiers?
You may suspect that the default access level is public, since public is the default
access level in C++. In fact, the default access level is called package access, because
only classes in the same package have access to these class members. The only way
to declare a member with package access is to use no access-modifier keyword at all.

The Java language defines one further access level; this access level is borrowed from
C++ and is called protected. The protected modifier is used when you want a
member to be accessible in subclasses. We'll discuss protected class members
when we talk about inheritance.

BankAccount.java with access modifiers

In the code listing below, you'll note that the balance field is declared using the
private access modifier. We don't want any programmers accessing an account's
balance field directly. Instead, we want them to change this field using the
deposit() or withdraw() methods, which are declared public. The same is true
of the interest field, which is private, and the setInterest() method, which is
public.

class BankAccount {

private float balance;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 29 of 44

private static float interest;

public void deposit(float amount) {
balance += amount;

}

public void withdraw(float amount) {
balance -= amount;

}

public static void setInterest(float interestRate) {
interest = interestRate;

}

public static void main(String[] args) {

// create a new account object
BankAccount account = new BankAccount();

// deposit $250.00 into the account
account.deposit(250.00F);

// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

Creating objects

Looking at the main() method of the BankAccount class, you can see that we
created a new BankAccount object, like this:

BankAccount account = new BankAccount()

First, we declare an object (that is, a variable) of type BankAccount. As you can
probably guess, the new keyword is used to set aside enough memory to create a new
object. The new object is actually created by this statement: BankAccount(). This
statement looks like a method call, but we didn't declare a method with this name, so
you may wonder what the statement is actually doing.

This is, in fact, a constructor call. A constructor is a special operator that is used to
create objects. You can't create Java objects without a constructor, so if you write a
class without a constructor, the compiler will create a default one. That's why we can
call BankAccount(), even though we didn't explicitly write a constructor in the
BankAccount class.

Strictly speaking, a constructor is not a kind of method because methods are class
members and constructors aren't. Class members, like fields and methods, are
inherited in subclasses -- constructors are never inherited.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 44 Java programming for C/C++ developers

Java versus C++ constructors

Java constructors are declared in much the same way as C++ constructors. Java
constructors do not have return types; all constructors implicitly return a new object of
the class in which it is defined. Every Java constructor must have the exact same name
as the class in which it is declared. Otherwise, constructor declarations are pretty much
the same as method declarations. In particular, constructors can take parameters, just
like Java methods.

Let's write our own constructor for our BankAccount class. When we first create a
BankAccount object, we'll want to initialize that BankAccount object by giving it an
initial balance, so our constructor will take a float parameter. The body of the
constructor will simply set the balance field of the newly created BankAccount
object to the specified value.

You can create as many constructors as you want in a class. If you write a constructor,
however, the Java compiler will not create a default constructor for you. So, once we
write our BankAccount(float initBalance) constructor we can't create
BankAccount objects using the new BankAccount() statement. We'll have to use a
statement like new BankAccount(1000.00F), which will create a BankAccount
object with an initial balance of $1000.00.

BankAccount.java with a constructor

Below is the BankAccount class with a constructor added:

class BankAccount {

private float balance;
private static float interest;

public BankAccount(float initBalance) {
balance = initBalance;

}

public void deposit(float amount) {
balance += amount;

}

public void withdraw(float amount) {
balance -= amount;

}

public static void setInterest(float interestRate) {
interest = interestRate;

}

public static void main(String[] args) {

// create a new account object

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 31 of 44

BankAccount account = new BankAccount(500.00F);

// deposit $250.00 into the account
account.deposit(250.00F);

// set interest rate for all BankAccount objects
BankAccount.setInterest(5.0F);

}
}

The this keyword
The Java language uses the this keyword to reference the current object. You can use the
this keyword to explicitly refer to fields, methods, and constructors in the current class.

A common use for the this keyword is to resolve variable scope issues. For example, our
BankAccount class has a field called balance. Let's say we want to write a method called
setBalance(float balance), which will set the balance field of our object. The
problem is that inside of the setBalance(float balance) field, when we refer to
balance, we are actually referring to the balance parameter, not the balance field. We
can explicitly refer to the field by using the this keyword.

public void setBalance(float balance) {
this.balance = balance;

}

Another use for this
Another use of the this keyword is to call a constructor from within the body of another
constructor. For example, say that we want to write a constructor for our BankAccount class
that takes no parameters and sets the balance to $0.00. We could do this by calling the
constructor that we already wrote. To call a constructor inside the body of another
constructor, use the this keyword, followed by the parameters for the constructor you want
to call. You can only use this to call constructors inside of another constructor body, and it
must be the first statement in the constructor body.

public BankAccount() {
this(0.0F);

}

What you've learned about Java classes
We'll close this section with a quick review of the important points we've covered, as follows:

• Class members: Java class members are fields and methods. Fields represent data, and
methods represent operations. A class is a declaration of a class of objects, which are
defined in terms of the class's members.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 44 Java programming for C/C++ developers

• Access modifiers: You use access modifiers to limit the visibility of class members and
constructors outside of the class in which they are defined. Most often, you'll encapsulate
all the data in a class by declaring class fields private, and you'll define the interface of a
class by writing public methods.

• Constructors: You define constructors as a way to let programmers create instances of
your class. Generally, you'll define constructors that make it easy for a programmer to
create an object that is initialized properly. Very often, you'll define several constructors
that call other constructors using the this keyword.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 33 of 44

Section 7. Inheritance

Overview

We'll close this tutorial with a discussion of inheritance. Inheritance is one of the most
important benefits of object-oriented programming, and it is important that you
understand it correctly in order to use it to the greatest effect.

Here's what we'll cover in this section:

• The extends keyword: Inheritance is defined when a class is declared. You use
the extends keyword to specify the superclass of the class you're writing.

• Constructors: Constructors are not inherited in subclasses, but you will very often
invoke the constructors of superclasses in your subclass's constructors.

• Overloading/overriding: Overloading refers to writing several methods with the
same name but different parameters. Overriding refers to changing the
implementation of a method that is inherited in a subclass.

• The Object class: All Java objects ultimately inherit from the Object class, which
defines the basic functionality that every Java object is guaranteed to have.

• Interfaces: An interface is a description of behavior that provides no implementation.

• Inner classes and interfaces: Sometimes you may need to write a class or
interface that will only be used within another class or interface. The Java language
allows you to declare and use inner classes and inner interfaces for this purpose.

Extending classes

In C++, a class can inherit from any number of classes, but Java classes can only
extend one class. In other words, C++ allows multiple inheritance, but the Java
language only allows single inheritance.

Basically, inheritance is a way to reuse code. When class A inherits from, or extends,
another class B, class A automatically inherits all of the public and protected
members of class B. If class A is in the same package as class B, class A will also
inherit all of the members with default, or package, access. It is important to note,
however, that subclasses never inherit the private members of the classes they extend.

Once you extend a class, you can add new fields and methods, which define the
attributes and operations that make your new class distinct from the superclass. Also,
you can override the operations of the superclass that must behave differently in the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 44 Java programming for C/C++ developers

subclass.

You can explicitly extend a class when you define it. To extend a class, you simply
follow the name of the class with the extends keyword and the name of the class you
want to extend. If you do not explicitly extend a class, the Java compiler will
automatically extend the class Object. In this way, all Java objects are ultimately
subclasses of class Object.

Extension example

Let's suppose we want to create a new CheckingAccount class. A
CheckingAccount is a special kind of BankAccount. In other words, a
CheckingAccount has the same attributes and operations as a BankAccount.
However, a CheckingAccount also has an added operation; namely cashing a
check. So we'll define our CheckingAccount class so that it extends BankAccount
and add a cashCheck() method, as shown below.

class CheckingAccount extends BankAccount {

public void cashCheck(float amount) {
withdraw(amount);

}
}

Subclass constructors

Constructors are not really members of a class, and constructors are not inherited. This
makes sense if you think about it. A BankAccount constructor creates
CheckingAccount objects, so it can't be used in the CheckingAccount class to
create CheckingAccount objects.

You can, however, use constructors from a superclass to initialize the parts of a
subclass that are inherited. In other words, you'll often need to call superclass
constructors in subclass constructors to partially initialize your subclass objects. You
can do this by using the super keyword, followed by a parameterized list representing
the arguments of the super class constructor you want to call. If you're using the super
keyword in a constructor, to call a superclass constructor, it must appear as the first
statement in the constructor body.

For example, we'll need to write a CheckingAccount constructor to initialize
CheckingAccount objects. We want to create CheckingAccount objects with an
initial balance, so we'll pass in a dollar amount. This is just like a constructor in the
BankAccount class, so we'll use that constructor to do all the work for us, as shown
below.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 35 of 44

class CheckingAccount extends BankAccount {

public CheckingAccount(float balance) {
super(balance);

}

public void cashCheck(float amount) {
withdraw(amount);

}
}

You can also use the super keyword to explicitly refer to superclass members from a
subclass. We'll explore this use of the super keyword in the next panel.

Overloading and overriding

Like C++, the Java language allows you to define several methods with the same
name, as long as they take different parameters. For example, we can define a second
cashCheck() method that takes the amount of the check to be cashed and a fee to
be applied for the service. This is called method overloading.

public void cashCheck(float amount) {
withdraw(amount);

}

public void cashCheck(float amount, float fee) {
withdraw(amount+fee);

}

Often, when you create a subclass, you'll want to override the behavior of a method
that is inherited from a superclass. For example, let's say that one difference between
a CheckingAccount and a BankAccount is that there is a fee applied when you
withdraw money from a CheckingAccount. We'll need to override the withdraw()
method in the CheckingAccount class so that a $0.25 fee is applied. In fact, we'll
define our CheckingAccount withdraw() method in terms of the
BankingAccount withdraw() method, by using the super keyword, as shown
below.

public void withdraw(float amount) {
super.withdraw(amount+0.25F);

}

The Object class

The Object class is a special class in the Java class hierarchy. All Java classes are
ultimately subclasses of class Object. In other words, the Java language supports a
centrally rooted class hierarchy, and the Object class is the root class of that
hierarchy. (C++ does not have a class hierarchy; this concept was borrowed from

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 44 Java programming for C/C++ developers

SmallTalk.)

Why is this important? Well, because all Java objects inherit from the Object class,
you can call the methods defined in Object for any Java object, and expect similar
behavior for each. For example, the Object class defines a toString() method,
which returns a String object that represents the object. You can call the
toString() method for any Java object and expect to get back a string
representation of that object. Most class definitions will override the toString()
method so that it returns a specialized string representation for that particular class.

The other implication of having Object at the root of the Java class hierarchy is that all
objects can be cast down to Object objects. In C++, you can use templates to define
data structures that take objects of different types. In the Java language, you can
define data structures that take objects of class Object, and these data structures can
hold any Java object.

Abstract classes

An abstract class is a class that cannot be instantiated. You may be wondering why
anyone would ever want to create a class that you can't use to create objects. The
answer is that you want other programmers to extend your class, but never create an
instance of it. You can explicitly stop other programmers from instantiating your class
by using the abstract modifier.

You can make any ordinary class an abstract class, just by adding the abstract
modifier. However, usually an abstract class will have one or more abstract methods.
As you might be able to guess, an abstract method is a method that is declared, but not
implemented, much like a C function prototype. When a class extends an abstract
class, it must provide an implementation for each abstract method, or else it must also
be declared as an abstract class. You can define an abstract method by using the
abstract modifier.

For example, let's define an AbstractAccount class, which represents a very basic
bank account. The designer of this class does not want other programmers to use this
class to create AbstractAccount objects. Instead, other programmers should use
this class as a base class for creating concrete implementations of bank accounts. For
example, you could create a SavingsAccount class and a CheckingAccount class,
both of which subclass BankAccount. It doesn't make sense to create an instance of
an AbstractAccount because an AbstractAccount doesn't really exist. An
AbstractAccount is an abstract idea, but a SavingsAccount and a
CheckingAccount are real kinds of bank accounts, and they do exist. After all, if you
went into a bank and said, "I'd like to open a bank account," the first thing they'd ask is,
"Do you want a savings account or a checking account?"

AbstractAccount.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 37 of 44

abstract class AbstractAccount {

private float balance;
private static float interest;

public void setBalance(float balance) {
this.balance = balance;

}

public void deposit(float amount) {
balance += amount;

}

public abstract void withdraw(float amount);

public static void setInterest(float interestRate) {
interest = interestRate;

}
}

Interfaces

We've already noted that a Java class can only extend one class. If you're coming from
a background in C++, where classes can inherit from any number of classes, you may
see this as extremely limiting, and you're right. The designers of the Java language felt
that multiple inheritance was too complicated, so instead they introduced a new
concept: interfaces.

An interface is like an abstract class, with the following exceptions:

• All interfaces are implicitly abstract, so you don't need to use the abstract
keyword. Methods defined in an interface are also implicitly abstract, so you don't
need to use the abstract keyword for methods. If you try to declare a method with
a body in an interface, you'll get a compile-time error.

• All members of an interface are implicitly public.

• All fields defined in an interface are implicitly static and final.

• An interface cannot be instantiated, so an interface does not define a constructor.

An interface is declared just like a class, except the interface keyword is used
instead of the class keyword. An interface can extend any number of
superinterfaces. Methods inside an interface cannot include an implementation.
Interface methods are simply method definitions; they do not have bodies.

Account.java

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 44 Java programming for C/C++ developers

The code sample below shows how we might write a basic account interface, which
defines a base set of functionality for bank accounts. Notice that there are no bodies for
the methods declared in an interface.

interface Account {

public static final float INTEREST = 0.35F;

public void withdraw(float amount);

public void deposit(float amount);
}

Implementing interfaces

A Java class can extend only one class, but it can implement any number of interfaces.
When a class implements an interface, it must implement every method defined in that
interface.

Let's define a SavingsAccount class that implements the Account interface.
Because the Account interface defines two methods, withdraw(float amount)
and public void deposit(float amount), the SavingsAccount class must
provide an implementation for them. The SavingsAccount class can still extend
another class, and it can implement any other interfaces, as long as they don't define
the same members as the Account interface.

class SavingsAccount implements Account {

private float balance;

public SavingsAccount(float balance) {
this.balance = balance;

}

public void cashCheck(float amount, float fee) {
withdraw(amount+fee);

}

public void withdraw(float amount) {
balance += balance;

}

public void deposit(float amount) {
balance -= balance;

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 39 of 44

Inner classes and inner interfaces

As we mentioned earlier, a class can have fields, methods, classes, and interfaces as
members. A class or interface that is defined inside another class or interface is called
an inner class or inner interface. Inner classes and interfaces were added to the Java
language in version 1.1.

Classes and interfaces that are not inner classes or inner interfaces are called
top-level classes and top-level interfaces . We've only been dealing with top-level
classes and interfaces up to this point. You can always use a top-level class and
interfaces in place of nested classes and interfaces; they are simply added as a
convenience feature.

You generally use an inner class or inner interface to represent a class or interface that
you will only need to use inside the class or interface in which it is declared. Let's say
you are defining a LinkedList class. You will probably use a Node class to represent
the individual nodes that are chained together to create the linked list. Since this Node
class will only be used internally in the LinkedList class, we can declare it as an
inner class.

LinkedList.java

As you can see in the code listing for the LinkedList class, there is a special Node
class that is defined as a private member of the LinkedList class. The Node class
could have been written as a normal, top-level class, but because it is only used inside
the LinkedList class, it is most appropriate to define it as a private member of that
class, as shown below.

class LinkedList {

private Node head;

public LinkedList() { head=null; }

public boolean isEmpty() { return (head==null); }

public void add(int data) {
Node node = new Node(data);
node.next = head;
head = node;

}

public void remove() {
head = head.next;

}

/**
* Returns a String representation of the list.
*/

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 44 Java programming for C/C++ developers

public void display() {
Node currentNode = head;
while(currentNode != null) {

System.out.println(currentNode.toString());
currentNode = currentNode.next;

}
}

/**
* Represents a node in a linked list.
*/
private class Node {

public int data;
public Node next;

public Node(int data) {
this.data = data;

}

public String toString() {
return "(" + data + ")";

}
}

public static void main(String[] args)
{

LinkedList list = new LinkedList();
list.add(8);
list.add(6);
list.add(5);
list.add(3);
list.remove();
list.display();

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 41 of 44

Section 8. Wrapup and resources

Tutorial summary
In this tutorial we've gone over the most essential components of the Java language, using
working examples and comparison to C/C++ to aid you in your learning. At this point, you
should feel comfortable writing simple Java programs. Briefly, you should be able to do the
following:

• Write a Java class with a main() method, compile it, and run it.

• Write a Java interface and compile it.

• Write one or more constructors for your class.

• Write a class that extends another class and implements one or more interfaces.

• Create and use objects using the new keyword and constructor calls.

You should also have enough of a grasp of the Java language to begin examining and
playing around with more advanced Java code. A good place to begin would be with the
Java platform classes themselves. The best way to gain experience using the language is to
browse the API documentation and start writing programs that use these classes. You may
also want to undertake one or more of the advanced exercises in the next panel. See
Resources on page 43 for further references to any of the topics covered in this tutorial.

Advanced exercises
To increase your proficiency in Java programming, you may want to further practice
implementing and extending the Java classes we've worked with here. Start with one of the
exercises below:

• Write a Java interface called Account, which will define the basic behavior of a typical
bank account. This interface should declare a withdraw() method and a deposit()
method. What, if any, parameters should these methods take, and what should their types
be? Look at the Account interface from the section on inheritance if you need help getting
started.

• Write a Java class called SavingsAccount that implements the Account interface. Add
a method called getBalance() that returns the current balance for the account. What
type should this method return? Do you need to declare a field to hold the balance for this
class?

• Write a Java class called Check that represents a typical check. You should write a
method called getAmount() that returns the amount for the check that was written. What
type should this method return? What, if any, fields should this class declare, and what
should its type be?

• Write a Java class called CheckingAccount that extends the SavingsAccount class.
Add a method called cashCheck() that deducts the amount of a specified Check object
from the account. What, if any, parameters should this method take, and what should their
types be?

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 44 Java programming for C/C++ developers

• Write a Java class called Fibonacci, which takes a number argument and computes the
Fibonacci number for that index in the sequence 0, 1, 1, 2, 3, 5, 8, 13. In other words, you
start with 0 and 1, and every successive number is the sum of the previous two. If you call
the program with the number 0, it should return 0, the number 6 should return 5, and the
number 7 should return 13. Look at the Factorial program if you need help getting
started.

Resources
• Download javac-cpp-source.zip, the source for this tutorial.

• You can download and install any Java SDK (and all related documentation) for free from
the Java Developer Connection (http://developer.java.sun.com/developer/).

• You'll have no trouble finding a workable text editor on Tucows.com
(http://www.tucows.com/).

• If you want to learn more about Unicode, visit the Unicode homepage
(http://www.unicode.org).

• To learn more about the Java programming language, see Ken Arnold and James
Gosling's The Java Programming Language: Third Edition (Addison-Wesley, 2000,
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}).

• David Flanagan's Java in a Nutshell, Third Edition is also essential reading for the
beginning Java programmer (O'Reilly, 1999, http://www.oreilly.com/catalog/javanut3/).

• As you advance, you will find your bookshelf is incomplete without a well-thumbed copy of
Design Patterns: Elements of Reusable Object-Oriented Software , by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley Professional
Computing Series, 1994,
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}).

• To learn more about design patterns, you may also want to check out Paul Monday's
tutorial, "Java design patterns 101" (developerWorks, January 2002,
http://www-106.ibm.com/developerworks/education/r-jpatt.html).

• Once you're comfortable with the basics of Java programming, you may want to check out
my tutorial, " Java programming with JNI (developerWorks, March 2002,
http://www-106.ibm.com/developerworks/education/r-jni.html)," which covers the two most
common uses of the Java Native Interface: calling C/C++ code from Java programs, and
calling Java code from C/C++ programs.

• Get another perspective on the Java Native Interface (and native compilation on the Java
platform), in the article, "Weighing in on Java native compilation" (developerWorks,
January 2002, http://www-106.ibm.com/developerworks/library/j-native.html).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Java programming for C/C++ developers Page 43 of 44

javac-cpp-source.zip
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/
http://www.tucows.com/
http://www.unicode.org
http://www.unicode.org
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.awprofessional.com/catalog/product.asp?product_id={ED17FE26-3FB4-4E25-86FD-322061041B2B}
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.oreilly.com/catalog/javanut3/
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www.awprofessional.com/catalog/product.asp?product_id={E1CD5BE7-E008-481B-8D0C-8E80CE9978F9}
http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/ java-onlinecourse-bytitle/13DDABAE969AACBC86256B3700586A9A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/52FFDF7067EAA64986256B87006A5D37?OpenDocument
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html
http://www-106.ibm.com/developerworks/java/library/j-native.html

• Find out why WebSphere Studio Application Developer
(http://www-3.ibm.com/software/ad/studioappdev/), IBM's integrated development
environment for building Java enterprise applications, won the Java Pro 2002 Most
Valuable Product and Best Java Deployment Tool awards.

• See the developerWorks tutorials page
(http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/)
for a complete listing of free Java technology tutorials from developerWorks.

• You'll find hundreds of articles about every aspect of Java programming in the
developerWorks Java technology zone.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 44 Java programming for C/C++ developers

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/studioappdev/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/studioappdev/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/studioappdev/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/studioappdev/&origin=j
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bytitle?OpenDocument&Count=500/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Getting started
	What is this tutorial about?
	Should I take this tutorial?
	What do I need to take this tutorial?
	Historical background
	About the author

	Setting up
	Introducing the SDK
	Installing the SDK

	Working with the SDK
	Your first Java program
	Factorial.java source
	Compiling the program
	Running the program
	What you've learned about the SDK

	Introducing the Java language
	Overview
	C and C++ execution environments
	The Java execution environment
	Comparison of execution environments
	Primitive data types
	The char types
	Character escape sequences
	Java and C integer types
	The floating-point types
	The boolean types
	Operators
	C/C++ functions versus Java methods
	Arrays
	Strings
	The main() method
	Passing arguments to the main() method
	Other differences

	Classes and objects
	Introduction to object-oriented programming
	Working with classes
	An account struct
	Account functions
	Grouping operations with data
	Account.c
	Using the Account
	Benefits of objects
	Defining a C++ class
	Account.cpp
	Defining a Java class
	Account.java

	Java classes in depth
	Overview
	Class members
	BankAccount.java
	Access modifiers
	BankAccount.java with access modifiers
	Creating objects
	Java versus C++ constructors
	BankAccount.java with a constructor
	The this keyword
	Another use for this
	What you've learned about Java classes

	Inheritance
	Overview
	Extending classes
	Extension example
	Subclass constructors
	Overloading and overriding
	The Object class
	Abstract classes
	AbstractAccount.java
	Interfaces
	Account.java
	Implementing interfaces
	Inner classes and inner interfaces
	LinkedList.java

	Wrapup and resources
	Tutorial summary
	Advanced exercises
	Resources
	Feedback

