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68HC11 Introduction.
© Fred Martin, adapted by Harry Broeders. Laatste wijziging: 2 april 2004

This webpage introduces the inner workings of the 68HC11 microcontroller, and provides some details on the
assembly language for the 68HC11. This webpage is adapted by Harry Broeders from the "Introduction to 6811
Programming" written by Fred Martin of M.I.T (see this copyright notice).

Bits and Bytes

Most humans, having ten fingers, think in decimal numbers. In computers, information is represented with
voltages, and it is most convenient for the voltage levels to represent only two states: a binary one or binary zero.
Thus computers process binary digits, or bits.

For convenience, microprocessors group bits together into words. The first microprocessor, the Intel 4004,
operated on a word composed of four bits. Today, most microprocessors use eight bit words, called bytes.

In an eight bit numeral, 256 different states can be represented ( 28=256 ). Programmers use these 256 states to
represent different things. Some common usages of a byte of data are:

a natural number from 0 to 255;

an integer in the range of -128 to 127;

a character of data (a letter, number, or printable symbol).

When programmers need to represent larger numerals, they group bytes together. A common grouping is two

bytes, often called a (16-bit) word. A word can have 65536 states, since 216 = 65536.

Decimal numbers are painful to use when talking about binary information. To make life easier, programmers
started to use the base 16 hexadecimal (or hex for short) numbering system when talking about bits, bytes, and
other binary data.

The hex system uses 16 different digits to represent each place value of a numeral. Using hex, one would count
as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10 ...etc. The letters A though F are then used to represent the
values of (decimal) 10 through 15, respectively. This is wonderful, because a hex digit (of 16 possible states) is
equivalent to four bits exactly. Then, a byte can be represented by exactly two hex digits, and a sixteen bit word by
four of them.

The following conventions are supported by Motorola's software products for their microprocessors. Binary
numbers are represented by the prefix %. Hexadecimal numbers are specified by $. Decimal numbers don't have 
a prefix. (These aren't the only conventions that are used in the computer world, but they are standard throughout
these notes and Motorola software.)
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Figure 1: Some Numeric Conversions.

binary decimal hex

%00000000 0 $00

%00000001 1 $01

%00000010 2 $02

%00000011 3 $03

%00000100 4 $04

%00000101 5 $05

%00000110 6 $06

%00000111 7 $07

%00001000 8 $08

%00001001 9 $09

%00001010 10 $0A

%00001011 11 $0B

%00001100 12 $0C

%00001101 13 $0D

%00001110 14 $0E

%00001111 15 $0F

%00010000 16 $10

%10011100 156 $9C

%10111101 189 $BD

%11111111 255 $FF

%0000000100000000 256 $0100

%0000001111101000 1000 $03E8

%0000010000000000 1024 $0400

%0001000000000000 4096 $1000

%1111111111111111 65535 $FFFF

Let’s examine some of the numeric conversions in Figure 1. Notice that four bits equal one hex digit. This is
helpful in converting binary to hex. Notice that it is easy to transcribe between binary and hexadecimal
representation, but using decimal is often cumbersome.

It is good to know some general quantities. For example, eight bits, or one byte, is 256 values. Then the largest
unsigned integer representable in a byte is 255. The largest integer representable in two bytes is 65535.

A byte can be used to represent one character of information. A standard has been devised for this, called the
American Standard Code for Information Interchange standard, or ASCII code, which is pronounced as "ass-key".
ASCII is almost universally accepted for representing the English character set, including upper and lower case
letters, numbers, and typical punctuation (like !@#$%&*()). 16-bit international character codes such as are also
available.

In the back of the Motorola 68HC11 programmer's handbook is the following table of the ASCII codes.

Figure 2: ASCII Codes.
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The most important thing to know is first that it exists, but then some other details. First, notice that it only uses
seven of the eight bits in a byte. So, there are actually only 128 ASCII characters, using the values $00 to $7F hex.

Printable characters start at $20 hex (32 decimal). The codes from $0 to $1F are used for things like cursor
control, line feeds, and the like. Knowing the ASCII characters becomes important when doing interactive
programming on the 68HC11, in which case the user might type ASCII information to the 68HC11 over the serial
line, and it would respond in kind. Then, the programmer must deal with the characters as bytes, and the ASCII
codes become important.

Introduction to the 68HC11

Memory Map

Microprocessors store their programs and data in memory. Memory is organized as a contiguous string of
addresses, or locations. Each memory location contains eight bits of data (this is because the 68HC11 is an 8-bit
micro; other processors can have 16 or 32 bits of data at each memory location).

The entire amount of memory that a processor can access is called its address space. The 68HC11 has an 
address space of 65,536 memory locations, corresponding exactly to 16 bits of address information. This means
that a 16-bit numeral can be used to point at, or address, any of the memory bytes in the address space of the
68HC11. Thus four hexadecimal digits (4 bits per digit × 4 digits) can exactly specify one memory location (in
which the user will find one byte of information).

In general, any area of memory should be equivalent to any other. Because the 68HC11 is a special-purpose
chip, and all of its memory is etched right on the microprocessor chip itself, its designers had to dedicate
portions of its memory to particular functions. Figure 3 shows a "memory map" of one of the members of the
68HC11 family of processors, the MC68HC11A8.
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Figure 3: Memory Map of the MC68HC11A8
Microprocessor.

Memory Address Function

$0000 - $00FF RAM memory (256 bytes)

$0100 - $0FFF unused

$1000 - $103F special registers (64 bytes)

$1040 - $B5FF unused

$B600 - $B7FF EEPROM memory (512 bytes)

$B800 - $DFFF unused

$E000 - $FFFF ROM memory (8192 bytes)

The first area of memory, from address $00 to $FF, is the chip's random access memory, or RAM. RAM can be 
both written and erased. It is "volatile," which means that when power is removed from the chip, it loses its state.
RAM is typically used for storing data.

Programs and constant data will reside normally in the read only memory, or ROM. ROM means what it 
suggests: that memory can only be read, not written to like RAM. It is programmed at the factory, in mass
quantities. The last hundred bytes or so of the address space, from addresses $FFC0 to $FFFF, are reserved for
special interrupt vectors, which are discussed later. This is good for companies that are selling a production
version. On the development board we use (the Motorola EVM = EValuation Module) the ROM is replaced by RAM
so you can develop and test your programs. On the EVM there is 16K program memory available (in stead of 8K
in the 68HC11A8 chip).

Figure 4: Memory Map of the EVM.

Memory Address Function

$0000 - $00FF RAM memory (256 bytes)

$0100 - $0FFF unused

$1000 - $103F special registers (64 bytes)

$1040 - $B5FF unused

$B600 - $B7FF EEPROM memory (512 bytes)

$B800 - $BFFF unused

$C000 - $FFFF ROM memory (16384 bytes)

EEPROM is an acronym for electrically erasable programmable read-only memory. EEPROM is the culmination 
of a trend in programmable, yet permanent, memory technology.

The first user programmable ROM was PROM. PROM chips can't be erased, so in order to make changes to
code, the chip is thrown away and a new one is used. PROM chips are not especially expensive, but this process
still imposes a high development cost.

EPROM, or erasable programmable read only memory, was the next step. Most EPROM chips are erased by
exposing the chip to ultraviolet light for half an hour. This is a vast improvement over PROM, but unless there is a
large supply of blank chips for reprogramming, the programmer will have a long wait time between code
downloads.

Many members of the 68HC11 processor family have the latest development in ROM technology: EEPROM, which
is electrically erasable. This means that the chip can erase its own ROM, and download new data to be written
into it. This allows new programs to be downloaded into the chip in just ten seconds or so. Also, because it is
ROM, when the processor is powered down, its program does not go away.

EEPROM is not a substitute for RAM: writing new data in is extremely slow by RAM standards, and can only be
done a finite number of times (about one to ten thousand erase/write cycles).
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The EEPROM resides at addresses $B600 to $B7FF (512 bytes).

In the middle part of the address space, starting at address $1000, is an area for special control registers. By
storing and reading values from this area of memory, you can control input/output functions like the serial ports,
sensors and motor ports, and a host of other 68HC11 special functions. These features are discussed later.

Registers

A microprocessor does its work by moving data from memory into its internal registers, processing on it, and then
copying it back into memory. These registers are like variables that the processor uses to do its computations.
There are two different types of registers: accumulators, and index registers.

Accumulators are used to perform most arithmetic operations, like addition, subtraction, or performing logical
and bit operations (and, or, invert). Results of such operations are often placed back into a register; for example,
an instruction may add something to the "A" register and place the sum back into that same register. It is for this
reason that the name accumulator is appropriate for these register types: they accumulate the results of on-going
computations.

Index registers are used to point at data that is located in memory. For example, in the add operation just
described, the addend (the number getting "added in" to the sum) might be indexed by the "X"' register, meaning
that the X register is being used to indicate the address of the data in memory.

Figure 5 shows the "programmer's model" of the registers of the 68HC11.

Figure 5: Programmer's Model of 68HC11 Registers

The 68HC11 has two accumulators, labeled A and B. Each are 8-bit registers: they hold one byte of data.

The general-purpose index registers are the X and Y registers. These are 16-bit registers and are most
commonly used to address data in memory.

The A and B registers can be used together as a 16-bit arithmetic register, in which case they are named the D
register. As indicated in the diagram, the A register forms the "high bits," or most significant digit, in this mode.

The Stack Pointer, or SP register, is used to store the location of the program stack . The stack, which is explained
in detail later, is used for temporary storage of data, and to store the return address before a subroutine is called.

The Program Counter, or PC, is used to keep track of the current instruction being executed. The PC is
automatically incremented as the microprocessor proceeds through the instruction stream.

Programming the 68HC11

When a microprocessor runs a program, it advances sequentially through memory, fetching and executing one
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instruction at a time. As mentioned earlier, the PC (program counter) register keeps track of the address of the
instruction currently being executed. The microprocessor automatically advances the PC to the next instruction
after it is finished executing the current one.

Consider a typical instruction: load a number into the A register. The machine code for this instruction is (in hex):
86 nn, where nn is the byte to be loaded into the register. The hex value $86 is called the operational code, or
op-code, that signifies the "load A register" instruction.

Instructions may be one, two, three, or four bytes long, depending on what their function is. When the
microprocessor encounters the byte $86 in the instruction stream, it knows, "I'm going to fetch the next byte of
data, and load that into my A register." After the microprocessor evaluates the first byte of an instruction, it knows
how many more bytes it needs to fetch to complete the instruction, if it is longer than one byte. Then, it executes
the next instruction, and so on, ad infinitum.

Instructions take varying numbers of machine cycles to execute, depending on their complexity. The 68HC11
we're using operates at a frequency of 2 megahertz (MHz.), meaning that it executes 2,000,000 machine cycles
per second. The period of a machine cycle is then 0.5 microseconds (µsec), so an instruction that requires 3
machine cycles will take 1.5 µsec of real time to execute.

In general, longer instructions (those needing two, three, or four bytes) take longer (more machine cycles) to
execute, although there are some exceptions to this rule.

Machine Code vs. Assembly Language

The terms machine code and assembly language refer to the same thing: the program that is executed directly by
the microprocessor. However, these terms refer to the program in different states of development. Machine code
usually refers to the raw data stored as a microprocessor's program. This is commonly described in the
hexadecimal notation we've been using.

Assembly language is a set of mnemonics, or names, and a notation that is a readable yet efficient way of writing
down the machine instructions. Usually, a program that is written in assembly language is processed by an
assembler program , that converts the mnemonic instructions into machine code. This output from the assembler
program is often called the object code, which can then be executed directly by the microprocessor.

In the 68HC11 assembly language, the "Load A register" instruction that we discussed earlier is written as
follows:

    LDAA    #$80               

The word "LDAA" is the assembly language mnemonic for "LoaD Accumulator A."  Then, the #$80 is the 
hexadecimal value to be loaded (the value $80 was chosen at random).

When a 68HC11 assembler program processes an input file, it knows the mnemonics for all of the 68HC11
instructions, plus their corresponding op-codes. It uses this information to create the object code file.

The assembly process is a straight-forward, mechanical operation. Each assembly-language instruction is
converted to one machine-language instruction (though that instruction may be one to four bytes in length).
Assembler programs lack much of the sophistication that high-level language compilers must have.

But, assemblers typically have features to make writing assembly programs easier. These features allow the
creation of symbolic labels for constant values or memory addresses, perform arithmetic in binary, decimal, and
hex format, and convert character strings to binary values (among other functions).

The THRAss11 68HC11 assembler is described later. Rather than presenting an overview of assembly
language all at once, 68HC11 instructions are introduced throughout this document in a progressive fashion.

Addressing Modes

In our previous example (LDAA #$80), the hex value $80 is loaded into the A register. This method of loading data
into the register is called immediate addressing, because the data to be loaded is located "immediately" in the
instruction itself. Immediate addressing is commonly used to load a known piece of data into a register.
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There are other ways to address data bytes that need to be operated on. These different methods are known as
addressing modes. Other than the immediate addressing mode, most addressing modes provide ways of
accessing data that is stored somewhere in memory.

The extended addressing mode is one way to access data stored in memory. In this mode, the 16-bit address of
a memory byte is specified in the instruction. For example, the instruction

    LDAA    $1004

will load the A register with the contents of memory location $1004. This instruction uses three bytes of memory:
one byte is the op-code, and two more bytes are needed to specify the 16-bit memory address.

The direct addressing mode is similar to the extended mode, but works only for data stored in the first 256 bytes
of the chip's address space, from addresses $00 to $FF. This happens to be the chip's RAM, as shown in
Figure 3, the 68HC11 Memory Map. So, the direct mode is used to store and load data to the RAM.

In the direct mode, only one byte of address data is required to specify the memory address, since it is known to
be in the first 256 bytes of memory. Instructions using direct addressing may require only two bytes: one for the
op-code, and one for the address information. They execute in fewer cycles as a result of this savings. The
68HC11 assembler will automatically choose the direct addressing mode if the address specified is in the range
$00 to $FF. Extended addressing could also be used to access this portion of memory, but it would rarely be
preferable.

The indexed addressing mode uses the X or Y register as a pointer into memory. The value contained in the index
register and an offset byte are added to specify the location of the desired memory byte or word.

Consider the following example: Suppose the X register currently has the value $1000. Then the instruction

    LDAA    0,X

will load the A register with the contents of location $1000, and the instruction

    LDAA    5,X

will load the A register with the contents of location $1005.

The offset value is contained in one byte of data, and only positive or zero offsets are allowed. This means that
only offsets in the range of 0 to 255 decimal are possible.

Why would a programmer use the indexed addressing mode, when the extended addressing mode will access
the desired byte directly? The indexed addressing mode is useful when you are repeatedly accessing locations
from a particular region of memory, and is useful in part because of the associated offset bytes.

For example, the 68HC11 special register area begins at location $1000 and ends at location $103F. Suppose
there were a series of instructions that accessed the registers located in this area. We could then set up the X
register as a base pointer, pointing to the beginning of this area of memory (we'd load the X register with $1000:
LDX #$1000). Then, we can use the two-byte indexed instructions to do a series of loads, stores, etc. to the
locations in this region in which we are interested.

This is good programming practice because each indexed instruction saves a byte over the extended instruction.
Once the cost is paid of loading the X register with the base address (a three byte instruction), each use of an
indexed instruction will save code space and execution time.

Indexed addressing is most useful when working with arrays of common data structures. Then, one can set up
an index register to point at the base of each data structure and use indexed operations to access individual
fields of that data element. To move to the next data element, only the index base pointer needs to be changed,
the offsets will then access the subsequent structure.

Finally, there are a few instructions that do not support the extended addressing mode (they support only direct
and indexed addressing), so if one must work with a byte not in the direct addressing area, then indexed
addressing must be used.

Here is a list of all of the addressing modes that are supported on the 68HC11 architecture:

Immediate
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Data is part of the instruction itself. This mode is specified with the use of the prefix "#" before the data byte
or word. Example: 
LDAA #$80 loads the A register with the hex number $80.

Direct
Data is located in RAM (within addresses $0000 to $00FF). One byte is used to specify which RAM
location is to be used. Example: STAA $80 stores the A register to the memory location $0080.

Extended
Location of data is specified by a 16-bit address given in the instruction. Example: STAA #$1000 stores 
the contents of the A register at memory location $1000.

Indexed
Location of data is specified by the sum of a 16-bit index register (register X or Y) and an offset value that
is part of the instruction. Example: LDAA 5,X takes the sum of the value currently in the X register and 5,
then loads the A register with the memory byte at that address. Offsets range in value from 0 to 255.

Inherent
Data is "inherent" to the microprocessor and does not require an external memory address. Example: TAB
transfers the contents of the A register to to the B register. No external memory address is required.

Relative
Location is specified by an offset value from the address of the instruction currently being executed.
Example: BRA 5 causes a branch to be formed that skips five bytes ahead in the instruction stream.
Relative addressing is only used in branching instructions. Offsets range in value from -128 to +127,
allowing jumps both forward and backward in the instruction stream.

Data Types

The 68HC11 supports a few different "data types," or ways of representing numbers. Most high-level languages
(like C) support many data types, such as integers, floating point numbers, strings, and arrays. In assembly
language, a programmer is given only "the bits" and must build more complex data types with subroutine
libraries.

The 68HC11 has two data types: 8-bit numbers and 16-bit numbers. This means that there are instructions that
process numbers of length eight bits (bytes), and there are instructions that process numbers of length sixteen
bits (words).

Keep in mind the range of an eight-bit number versus a sixteen-bit number. An eight-bit number can have 256

different values ( 28=256 ), and a sixteen-bit number can have 65536 different values ( 216=65536 ).

Arithmetic Operations

Microprocessors give the programmer a standard set of arithmetic and logical operations that can be performed
upon numeric data.

The 68HC11 provides instructions that work on both eight-bit data values (such as the A or B registers or memory
bytes) and sixteen-bit data values (such as the X and Y index registers). Earlier processors provided only eight-bit
operations; the programmer had to combine them to get sixteen-bit ones. The 68HC11 also provides
multiplication and division instructions.

The 68HC11 supports the following instructions:

Addition
for both 8-bit and 16-bit values.

Subtraction
for both 8-bit and 16-bit values.

Multiplication
of two 8-bit values to yield a 16-bit result.

Division
of two 16-bit values to yield an integer or fractional result.

Increment
of both 8-bit and 16-bit values. The increment operation adds one to its operand.

Decrement
of both 8-bit and 16-bit values. The decrement operation subtracts one from its operand.

Bitwise AND
for 8-bit values. This instruction performs a bit-wise "and" operation on two pieces of data. The result of an
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AND operation is 1 if and only if both of its operands are 1. (e.g., %11110010 ANDed with %11000011
yields %11000010).

Bitwise OR
for 8-bit values. This instruction performs a bit-wise "or" operation on two pieces of data. The result of an
OR operation is 1 if either or both of its operands is 1.

Bitwise Exclusive OR
for 8-bit values. The result of an exclusive-OR operation (called "EOR") is 1 if either, but not both, of its
inputs are 1.

Arithmetic Shift operations
on 8-bit and 16-bit values. The Arithmetic Shift operation moves all the bits in an operand to the left or to
the right by one bit position. This is equivalent to a multiplication or division by 2 (respectively) upon the
operand.

Rotation operations
on 8-bit values. These are similar to the shift operations except that the bit that gets shifted out of the high
or low bit position (depending on the direction of the rotation) gets placed in the bit position vacated on the
other side of the byte. Example: rotate right (ROR) of %11011001 produces %11101100.

Bitwise Set and Clear operations
on 8-bit values. These operations set or clear bits at specified bit positions within an eight-bit data byte.

Clear operations
on 8-bit memory bytes or registers. This instruction is equivalent to writing a zero into the memory location
or 68HC11 register but does so more quickly.

There are a few arithmetic instructions not mentioned here, but they are relatively obscure.

Signed and Unsigned Binary Numbers

There are two methods of representing binary numbers that are commonly used by microprocessors. Using
these two methods, the same string of 1's and 0's that comprise a byte or word can represent two different
numbers, depending on which method is being used.

The two methods are: unsigned binary format and two's-complement signed binary format.

The unsigned format is used to represent numbers in the range of 0 to 255 (one byte of data) or 0 to 65535 (one
word of data). This is the more simple way of representing data; it is easy to understand because there is a direct
translation from the binary digits into the actual numeric value. But, the unsigned format has the limitation that
values less than zero cannot be represented.

Here are some unsigned binary numbers and their decimal equivalents:

Figure 6: Unsigned 
Binary Numbers

binary decimal

%00000000 0

%00000001 1

%00000010 2

%00000011 3

%00000100 4

%00000101 5

%00000110 6

%10011100 156

%11100011 227

%11111111 255

Signed values are represented using the "two's complement" binary format. In this format, a byte can represent a
value from -128 to +127, and a word can represent a number from -32768 to +32767.

The highest bit (most significant, or left-most bit) of the number is used to represent the sign.  A "0" in the high bit
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indicates a positive or zero value, and a "1" in the high bit indicates a negative value.

If the number is positive or zero, then the signed representation is exactly equivalent to the unsigned one. For
example, the largest binary number representable in a byte, using the signed format is %01111111. The leading
zero is the sign bit, indicating a non-negative number; the seven ones that follow are the significant digits.

If the number is negative, then the following process determines its value: invert the significant digits (change
zero's to one's and one's to zero's), and add one. Put a minus sign in front of the number, and that is the
equivalent value.

For example, what is the value of the signed number %10011011? We know this is a negative number, since its
high bit is one. To find its value, we take the significant digits ( %0011011) and invert them, obtaining %1100100. 
We add one, and obtain %1100101. This value converted to decimal is 101; thus, our original number was equal
to -101.

Two's complement is employed because it has one very useful property: signed binary numbers can be added
together like unsigned ones, and results of standard addition and subtraction processes produce correct signed
values.

Consider the following example, which shows an addition of two signed binary numbers to produce a valid result:

               10011011     (-101 decimal)
             + 01110000     ( 112 decimal)
             ----------
            (1)00001011     (  11 decimal)
               

Ignoring the carry out of the highest bit position, we can see that performing regular binary addition on the two
numbers gives us the correct result. This is important, because then the microprocessor doesn't have to
implement different types of addition and subtraction instructions to support both the signed and unsigned data
representations.

Condition Code Register and Conditional Branching

Whenever the 68HC11 performs any type of arithmetic or logical operation, various condition codes are generated
in addition to the actual result of the operation. These condition codes indicate whether or not the following events
happened:

The result of the operation was zero.

The result of the operation overflowed the 8- or 16-bit data word that it was supposed to fit in. This
condition is based on interpreting the data operands as two's complement values.

The result was a negative value. Example: subtracting 50 from 10.

The result generated a carry out of the highest bit position. This happens (for example) when two
unsigned numbers are added and the result is too large to fit into one byte.

There is a special register in the 68HC11, called the condition code register, or CCR, where this information is 
kept. Each condition is represented by a one-bit flag in the CCR; if the flag is 1, then the condition is true. The
CCR has eight flags in all; four more in addition to the four mentioned.

Each flag has a name: the zero flag is called Z; the overflow flag is V, the negative flag is N, and the carry flag is C.

The usefulness of these flags is that programs may branch depending on the value of a particular flag or
combination of flags. For example, the following fragment of code will repeatedly decrement the A register until it
is zero. This code fragment uses the "branch if not equal to zero" instruction (BNE) to loop until the A register 
equals zero.

Loop    DECA            * decrement A register
        BNE     Loop    * if not zero, jump back to "Loop"
        ...             * program execution continues here
        ...             *    after A is zero

An entire set of these conditional branching instructions allows the programmer to test if the result of an
operation was equal to zero, not equal to zero, greater than zero, less than zero, etc.
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Some of the conditional branching instructions are designed for testing results of two's complement operations,
while others expect to test results of unsigned operations. As mentioned earlier, the same arithmetic operations
can be used on both signed and unsigned data. This is true, but the way that one must interpret the condition
codes of the result is different. Fortunately, the 68HC11 branch instructions will perform this interpretation
properly, provided the correct instruction is used for the type of data the programmer has in mind.

Here is a list of some of the conditional branching instructions supported by the 68HC11:

BEQ: Branch if Equal to Zero

Branch is made if Z flag is 1 (indicating a zero result).
BNE: Branch if Not Equal to zero: 

Branch is made if Z flag is 0 (indicating a non-zero result).
BCC: Branch if Carry is Clear

Branch is made if C flag is 0, indicating that a carry did not result from the last operation.
BCS: Branch if Carry is Set

Branch is made if C flag is 1, indicating carry occurred.
BLO: Branch if Lower

Branch is made if result of subtraction was less than zero. This instruction works correctly when using
unsigned data.

BGE: Branch if Greater Than or Equal

Branch is made if result of subtraction is greater than or equal to zero. This instruction works correctly only
when using unsigned data.

Other branching instructions work with signed data and check the proper combination of flags to tell if results are
greater or less than zero, etc.

One important thing to remember about branching instructions is that they use the relative addressing mode, 
which means that the destination of a branch is specified by a one-byte offset from the location of the branch
instruction. As such, branches may only jump forward or backward a maximum of about 128 bytes from the
location of the branch instruction.

If it is necessary to branch to a location further away, the JuMP instruction (JMP) should be used, which takes an 
absolute two-byte address for the destination. The destination of a JMP instruction thus may be anywhere in
memory.

If necessary, use a conditional branch instruction to jump to a JMP instruction that jumps to far-away locations.

Stack Pointer and Subroutine Calls

Almost all microprocessors support a special type of data structure called the stack. A stack stores data in a 
last-in, first-out (LIFO) method.

To visualize the stack, one may imagine a dishwasher who is washing a sink full of dishes. As he washes a dish,
he places it on top of a pile of already-washed dishes. When a chef removes dishes from the pile, the dish that
she removes is the last dish that the dishwasher placed on the pile. In this way, the stack of dishes stores the
dishes using a last-in, first-out algorithm.

The stack on the 68HC11 works the same way. Instead of a stack of dishes, the 68HC11 stores bytes in a
contiguous area of memory. Instead of a dishwasher and a chef, the 68HC11 uses a special register, called the
stack pointer or SP, to keep track of the location of the stack in memory.

When a number is placed on the stack (called a stack push), the number is stored in memory at the current
address of the stack pointer. Then the stack pointer is advanced to the next position in memory.

When a number is taken off the stack (called a stack pull), the stack pointer is regressed to the last location
stored, and then the number at that memory location is retrieved.

The stack has many different uses. One use is temporary storage of data. Suppose there is a number in the A
register to be stored and then retrieved a few instructions later. One could push it on the stack (PSHA) to save it,
and later pull it off the stack (PULA) to restore it.
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The data in several different registers may be temporarily stored and retrieved in this way. It is important to
remember that data goes on and comes off the stack in a particular order. If data is stored with a PSHA and then a
PSHB (push A register, push B register), it must restored with the sequence PULB, PULA (pull B register, pull A
register).

The most important use of the stack is involved with subroutines. Subroutines are pieces of code that may be
"called," or executed, by your main program. In this way, they are like utility routines that your software uses.

For example, suppose a program often has need to execute a delay, simply waiting 1/10 of a second. Rather than
repeatedly writing the code to perform the delay, it can be written just once, as a subroutine. Then, whenever the
main code needs execute the delay, it can just call the subroutine.

The key thing about executing a subroutine properly is knowing where to return when it finishes. This is where the
stack comes in. When a subroutine is called, the 68HC11 automatically "pushes" the return address -- the place
to continue after the subroutine is done -- onto the stack. Then, it branches to begin executing the subroutine.

When the subroutine is finished, the 68HC11 pulls the return address directly off the stack and branches to that
location.

One may think, "Well, we don't need a stack for this; we could just have one particular location where the return
address is stored. We could just look there when returning from a subroutine."

Actually, that is not a bad solution, but using the stack gives us a special power: it enables nested subroutine 
calls. What happens when a subroutine calls a subroutine? If a stack is being used, the second return address
simply gets pushed on top of the first, so that the first return address remains intact. In the other method, the first
return address would be overwritten and destroyed when the second subroutine call occurred.

One detail worth mentioning about the stack's implementation on the 68HC11 is that the stack builds downwards
in memory. That is, when a number is pushed on the stack, the stack pointer is actually decremented to point to
the next available memory location. This is somewhat counter-intuitive, but it is irrelevant to the function of the
stack.

Since the stack is a dynamic structure, it must be located somewhere in 68HC11 RAM (read/write memory). It is
customary to initialize the stack at the top of user RAM. Then, as the stack grows, it moves downwards towards
location $0000.

A good way to crash the processor is to repeatedly push a value on to the stack and forget to pull it off. If this
mistake is made inside a program loop, all of RAM will easily be filled with garbage. When a subroutine attempts
to return to its caller, the return address will be nowhere in sight.

Just remember: each stack push must be matched with a stack pull. Each subroutine call must be matched with
a return from subroutine.

Interrupts and Interrupt Routines

Interrupt routines are a type of subroutine that gets executed when special events happen. These special events
are often called interrupts, and they may be generated by a variety of sources. Examples of things that may
generate interrupts are: a byte coming in over the serial line, a programmable timer triggering, or a sensor line
changing state.

When an interrupt happens, the 68HC11 stops what it is doing, saves its local state (the contents of all registers),
and processes the interrupt. Each interrupt has code associated with it; it is this code that is executed when the
interrupt occurs.

Interrupts may be used to give the appearance that the 68HC11 is doing several things at once. There are a
several reasons for this:

The main code doesn't have to know when an interrupt occurs. This is because after the interrupt finishes,
control is returned to the main code exactly where it left off. No information is lost.

The interrupt servicing process is automatic. In this way, it is different from a subroutine call, which must
be explicitly done each time it is required.

Many interrupts can be enabled at the same time. Whenever they occur, they are serviced. Many
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"background jobs" can be taken care of independently of each other.

If multiple interrupts are being used, it is possible for an interrupt to occur during the servicing of a different 
interrupt routine. Typically, interrupting an interrupt routine is not a good idea. The 68HC11 deals with this nested
interrupt condition by queueing up the interrupts and processing them sequentially, based on a predetermined
interrupt priority scheme.

In their usage of the stack, interrupts are implemented quite like subroutines. When an interrupt call is
processed, however, the state of all of the 68HC11 registers is saved on the stack, not just the return address.
This way, when the interrupt routine returns, the processor can continue executing the main code in exactly the
same state that it left it.

Figure 7 shows the configuration of the stack immediately after an interrupt call.

Figure 7: Diagram of Stack After an Interrupt Call

Interrupt Vectors

When an interrupt occurs, the 68HC11 must know where the code associated with that interrupt is located. An
interrupt vector points to the starting address of the code associated with each interrupt. When an interrupt
occurs, the 68HC11 first finds its associated interrupt vector, then jumps to the address specified by the vector.

These interrupt vectors are "mapped" into specific areas of system memory. In the 68HC11 architecture, the
interrupt vectors are located at the top of memory. This area, reserved for the interrupt vectors only, starts at
address $FFC0 and continues to the end of memory, address $FFFF. Two bytes are needed for each interrupt
vector; thus it may be calculated that the 68HC11 has ($FFFF - $FFC0 + 1) ÷ 2 total interrupt vectors. (This is 32
decimal.)

The location of each interrupt vector is predetermined. For example, the RESET interrupt is generated when the 
system reset button is pressed. The RESET vector is located at addresses $FFFE and $FFFF, the very last two
bytes of memory. When the reset button is pressed, the 68HC11 jumps to the location specified by the pointer
contained in those two bytes. Since pressing reset should restart the microprocessor, the reset vector usually
points to the start of the main code.

Figure 8 shows a map of the memory space from locations $FFC0 to $FFFF and the interrupt vectors associated
with each location. Please refer to it later, when we discuss the purpose of some of the vectors that are listed
here.

Figure 8: Table of 68HC11 Interrupt Vector Locations

Address Purpose

$FFC0 reserved

$FFC2 reserved

$FFC4 reserved



14 of 19

$FFC6 reserved

$FFC8 reserved

$FFCA reserved

$FFCC reserved

$FFCE reserved

$FFD0 reserved

$FFD2 reserved

$FFD4 reserved

$FFD6 SCI serial system

$FFD8 SPI serial transfer complete

$FFDA Pulse Accumulator Input Edge

$FFDC Pulse Accumulator Overflow

$FFDE Timer Overflow

$FFE0 Timer Output Compare 5 (TOC5)

$FFE2 Timer Output Compare 4 (TOC4)

$FFE4 Timer Output Compare 3 (TOC3)

$FFE6 Timer Output Compare 2 (TOC2)

$FFE8 Timer Output Compare 1 (TOC1)

$FFEA Timer Input Capture 3 (TIC3)

$FFEC Timer Input Capture 2 (TIC2)

$FFEE Timer Input Capture 1 (TIC1)

$FFF0 Real Time Interrupt (RTI)

$FFF2 /IRQ (external pin or parallel I/O) (IRQ)

$FFF4 /XIRQ (pseudo non-maskable interrupt) (XIRQ)

$FFF6 Software Interrupt (SWI)

$FFF8 Illegal Opcode Trap

$FFFA COP failure

$FFFC COP clock monitor fail

$FFFE system reset (RESET)

Architecture of the 68HC11

The 68HC11 chip includes many features that often must be implemented with hardware external to the
microprocessor itself. Some of these features include:

serial line input and output

analog to digital converters

programmable timers

counters

This section explains how to use these advanced features of the 68HC11.

Register Block
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The 68HC11 uses a particular area of memory to interface with the special functions. This area of memory is
called the register block  and is located from addresses $1000 to $103F.

The general method of controlling the various features of the chip is by reading and writing data to the different
registers in the register block. Since the register block is mapped into memory, the typical 68HC11 instructions
for reading and writing data to any area of memory are used to interact with these registers.

Block Diagram of 68HC11

Figure 9 shows a simplified block diagram of the 68HC11 architecture. This diagram depicts the 68HC11 in
"single chip" mode. A more complete block diagram may be found in the Motorola M68HC11 Reference Manual.

Figure 9: Simplified Block Diagram of 68HC11

When scanning the diagram, notice that some of the ports have arrows running in both directions (ports A, C, and
D). These ports are bidirectional, meaning that they can be used for either input or output.

Each port contains eight data bits, making it equivalent to one byte of data. Each data bit is mapped to a physical 
pin on the microprocessor package. This means that when data is written to a particular output port, that data 
appears as voltage levels on the real pins connected to that port. In this way, the 68HC11 can interface with 
external devices.

In many cases, ports may contain a mixture of pins used for either input or output. In other cases, particular pins
in a port are dedicated to a specific function.

Following is a brief description of each port on the diagram. The rest of this section explains how to use each port
in detail.

Port A.
This is a digital, bidirectional port that implements special timer and counter circuitry. The timers can be
used to generate waveforms of varying frequencies; the counters can be used to count certain events (like
rising edges of signal) on the input lines.

Port B.
This is a digital port that may be used for output only.

Port C.
This is a digital, bidirectional port. Its default state is for input.

Port D.
This is a bidirectional port dedicated to serial input and output functions. Two of these pins are used for
communications with a host computer.

Port E.
This is the analog input port.

The following section begins the in-depth explanation of these ports with Port B.

Port B

Port B is controlled by a register located at address $1004. In the 68HC11 literature, this register is named
PORTB. Port B is implemented as eight output pins on the 68HC11. The following two instructions write the value
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%00010000 at the Port B register location, $1004.

        LDAA    #%00010000
        STAA    $1004         * store A at "PORTB" location

Port C

Port C may be configured as an output port and used in a similar fashion to Port B using the DDRC (data direction 
for Port C) register, as detailed in the Motorola literature.

Port C is controlled by reading the value of the location $1003. Whatever input signals that are present on the Port
C lines are "latched" into Port C during the read operation.

The Port C register is referred to by the name PORTC.

The following code sample reads the digital inputs from Port C and branches to the routine called AllZero if the 
input from Port C is zero.

        LDAA    $1003    * load Port C value into A
        BEQ     AllZero  * if zero, branch

Analog Input Port

Port E is the analog input port. This port is controlled by several registers and may be configured in a few different
ways.

In order to use the analog-to-digital (A/D) converter, the A/D system must first be powered-up (its default state is
off).

The System Configuration Options register (OPTION) is used to turn on the A/D system. Bit 7 of this register must
be set to "1" in order to turn on the A/D system:

        LDAA    #%10000000    * bit 7 set to 1
        STAA    $1039         * location of OPTION register

The A/D system is actually configured as two banks of four channels each. In one of its operating modes, it
repeatedly samples values from either of these four-channel banks.

In another operating mode, the A/D system will repeatedly sample only one of the eight input channels. Because 
sampling takes a finite amount of time (about 17 µsec), this is a useful mode if one wants to look at one channel
very closely.

The A/D Control Status Register (ADCTL) is used to select these different modes. Figure 10 is a pictorial of the
ADCTL register.

Figure 10: Diagram of ADCTL Register

Bit 7 of the ADCTL register, CCF, is the Conversions Complete Flag. It is set to "1" when the A/D system has
finished converting a set of four values. It is important to wait for this flag to be set only when the mode is changed
of the A/D system. Then, the CCF will be set to zero, and one should explicitly wait for it to turn to one before
trusting the converted values.

Bit 5 is SCAN, the Continuous Scan Control. If this bit is set to one, the A/D system will repeatedly convert values. If
it is set to zero, the A/D will convert four values and stop. For typical usage, it is probably simpler to set it to one
and expect the A/D system to continuously convert values.

Bit 4 is MULT, the Multiple Channel/Single Channel Control. If this bit is set to one, the A/D will convert banks of 
four channels. If it is set to zero, the A/D will convert one channel only.

Bits 3 to 0 select the channel(s) to be converted. The results of the A/D conversion appear in four other registers
called ADR1, ADR2, ADR3, and ADR4.
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Figure 11 is a table that maps the settings of the channel select bits to the readings that appear in the ADRx
registers when MULT equals one. If MULT is zero, then the channel select bits select the channel that gets
converted into all four ADRx registers.

Figure 11: Settings of A/D Channel Select Bits

ADCTL is located at address $1030; ADR1 through ADR4 are located at addresses $1031 through $1034.

Timers and Counters

Port A implements a complex set of timer and counter hardware. This section will introduce some of the
hardware features; for a more complete description of the timer/counter system, refer to the pink book, The
Motorola M68HC11 Reference Manual.

Timers

There are five output timers. Each timer has independent configuration settings.

Each timer may be programmed to take an action on its output pin when a period of time elapses. Four possible
actions may be taken: do nothing, set the output high, set the output low, toggle (invert) the output value.

Each timer may be programmed to generate an interrupt when its time period elapses. Typically, the interrupt is
used to set up the timer again for its next cycle.

Each timer measures elapsed time by using a single 16-bit free running counter, or TCNT. Every timer has its own
16-bit output compare register that it compares against TCNT. When the value of TCNT matches the value in a 
timer's output compare register, then the timer takes its programmed action (changing its output state, and/or
generating an interrupt).

A typical way to generate a square wave on a timer output is to write a delay value into the timer's output compare
register. The period of the square wave is determined by the length of time that TCNT must count in order to match
the timer's output compare register. By writing new values into the output compare register, the timer can be set
up to wait until TCNT advances to match it.

The following code uses timer 4 to generate a square wave. The square wave is interrupt-driven: each time that
TCNT advances to match timer 4's output compare register, the interrupt routine writes a new value into the output
compare register, setting up the timer for another half-wave cycle.

The SetUp portion of the code enables timer 4's interrupt, and sets up the timer for a toggle each time the
compare matches. Assume that the interrupt vector for the timer points to the routine Tim4Int. This routine reads
the value in the timer's output compare register, and adds the value 1000 decimal to it. This way, TCNT will have to 
run for another 1000 counts before the timer toggles its output again. The default speed for TCNT is 500
nanoseconds per count, so the half-wave period of the resulting square wave will be 500 ns × 1000, which is 0.5
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milliseconds. The full square wave would have a period of 1 msec, or a frequency of 1000 Hz.

SetUp   LDAA    #%00000100    * timer 4 for toggle setting
        STAA    $1020         * Timer Control Register 1 (TCTL1)
        LDAA    #%00010000    * timer 4 select bit
        STAA    $1023         * Timer Interrupt Flag enable (TFLG1)
        STAA    $1022         * Timer Interrupt Mask enable (TMSK1)

Loop    BRA     Loop          * do nothing; interrupt takes over
        ...
        ...

Tim4Int LDD     1000          * load D register with 1/2 wave time
        ADDD    $101C         * add to Timer 4 output compare
        STD     $101C         * save sum back for next edge
        LDX     #$1000        * used in next instruction
        BCLR    $23,X $EF     * clears interrupt flag
        RTI                   * ReTurn from Interrupt

Counters

Port A also has three "input-capture" registers. These registers may trigger when any of the following events
happen: capture disabled, capture on rising edges only, capture on falling edges only, or capture any edge.

These registers may be used to time the length of a waveform.

Finally, one bit of Port A can be use for a "pulse accumulator" function. An eight-bit register PACNT can be 
configured to automatically count pulses on this input pin.

Real Time Interrupt

The 68HC11 also has a real time interrupt (RTI) function. This function generates interrupts at a fixed periodic
rate. This function would be useful, for example, in generating a pulse-width modulated control of the motor
output lines.

The RTI function can generate interrupts at any of four rates: 4.10 ms, 8.19 ms, 16.38 ms, and 32.77 ms.

TMSK2, the Miscellaneous Timer Interrupt Mask, is used to control the RTI system (located at address $1024).
Figure 12 is a diagram of this register.

Figure 12: Diagram of TMSK2 Register

The RTII bit enables the RTI system when the bit is set to one.

Two bits in the PACTL, the Pulse Accumulator Control Register, are used to control the rate of the RTI interrupts.
The following table shows the relationship of the RTR1 and RTR0 bits to the interrupt rate.

Figure 13: Interrupt Rate is set
in the PACTRL Register

RTR1 RTR0 Interrupt Rate

0 0 4.10 msec

0 1 8.19 msec

1 0 16.38 msec

1 1 32.77 msec

The PACTL register is located at address $1026. RTR1 and RTR0 are the one and zero bits, respectively, of this
register.

See the M68HC11 Reference Manual for more details on the RTI system.
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Serial Interface

The serial interface port is controlled by five different registers. Of these, the following three are most important:

SCI Baud Rate Control Register    
called BAUD. This register controls the baud rate (speed) of the serial port. Location: $1028.

SCI Data Register
called SCDR. This register is used to receive and transmit the actual serial data. Location: $102F.

SCI Status Register
called SCSR. This register provides status information that indicates when transmissions are complete or
when errors in transmissions occur.

The following code sample initializes the serial port for transmission and reception of 9600 baud serial data:

        LDX     #$1000              * used as index register
        BCLR    SPCR,X #PORTD_WOM   * turn off wired-or mode
        LDAA    #BAUD9600           * mask for 9600 baud speed
        STAA    BAUD,X              * stored into BAUD register
        LDAA    #TRENA              * mask for Transmit,Rec. enable
        STAA    SCCR2,X             * store in control register

The following code transmits a character and waits for it to finish tranmission:

        LDY     #$1000              * used as index reg
        STAA    SCDR,Y              * store A reg in SCDR
WCLoop  BRCLR   SCSR,Y TDRE WCLoop  * wait until data sent

The following code receives a character from the serial port:

        LDX     #$1000              * used as index reg.
RCLoop  BRCLR   SCSR,X RDRF RCLoop  * wait until char ready
        LDAA    SCDR,X              * input character to A

See the M68HC11 Reference Manual for more details on the SCI serial system.

The THRAss11 Assembler.

Information about the THRAss11 assembler can be found here.

Copyright.

This document is adapted from "Introduction to 6811 Programming" by Fred G. Martin, The Media Laboratory at
the Massachusetts Institute of Technology. The original document is Copyright c 1992–94 by Fred G. Martin. It
may be distributed freely in verbatim form provided that no fee is collected for its distribution (other than
reasonable reproduction costs) and this copyright notice is included.


